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ABSTRACT 
 
The laboratory diffusion test is a well-established and widely adopted approach for characterizing 
the transport properties of geological materials. Although there are several types of diffusion tests 
currently available, through-diffusion has been extensively used for testing rock samples and the 
data are interpreted with the time-lag method. The time-lag method is based on an approximate 
analytical solution assuming constant inlet and outlet concentrations at the ends of a test specimen. 
To meet these conditions, a large-sized cell, or reservoir, is generally used at the inlet side as a 
container for the source solution, and the solution in the measurement cell at the outlet side is 
continuously replaced with fresh solution throughout the duration of the test. This procedure may 
be time-consuming, cumbersome, and may introduce errors due to differences between analysis 
assumptions and actual test conditions. In this paper, we present two rigorous solutions to the 
through-diffusion test. Boundary conditions are improved to illustrate the following two cases: 1) 
constant inlet concentration, increasing outlet concentration; and 2) decreasing inlet concentration, 
increasing outlet concentration. A companion approach for back-calculating the effective diffusion 
coefficient and rock capacity factor from a diffusion test is also proposed. Possibilities of using the 
improved techniques in engineering practices are verified through a series of theoretical 
evaluations. 
 
INTRODUCTION 
 
The safe disposal or isolation of hazardous contaminants, including radioactive nuclear wastes, by 
using natural and/or engineering barriers requires a good understanding of their fate and transport 
properties in geological materials. Diffusion through and sorption onto geological materials can be 
the most important mechanisms of transport and retardation (1, 2), and a thorough evaluation of 
pertinent parameters is of crucial significance for the safety assessment. 
 
Laboratory diffusion test is a well-established and widely adopted approach for characterizing the 
transport properties of geological materials. Although there are several types of diffusion tests 
currently available (3), through-diffusion has been extensively used for testing rock or rock-like 
samples in the field of geological disposal of radioactive nuclear wastes (1, 4). This method is 
based on an approximate analytical solution assuming constant inlet and outlet concentrations at 
the ends of a test specimen, and the effective diffusion coefficient of the specimen is estimated 
from the data (concentration variations) of steady-state measurements. To be able to perform an 
analysis satisfying these assumptions, a large-sized cell, or reservoir, containing the source 
solution is generally placed at the inlet side to dampen concentration variations, and the solution in 
measurement cell at the outlet side is continuously replaced with fresh solution throughout the 
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duration of the test (e.g. 4, 5). This procedure may be laborious and cause errors due to differences 
between analysis assumptions and actual test conditions. In addition, the procedure may be 
time-consuming, especially when the effective diffusion coefficient of a test specimen is relatively 
low and/or the rock capacity factor is relatively high. 
 
In this paper, we present two rigorous solutions to the through-diffusion test. Boundary conditions 
are improved by taking into account concentration variations in the measurement cell alone or in 
both measuring and source cells. We also propose a companion approach for back-calculating the 
effective diffusion coefficient and rock capacity from a diffusion test. Using these rigorous 
solutions, we perform a theoretical evaluation of the conventional through-diffusion test and 
illustrate the possibilities of using these improved techniques. 
 
Mathematical Formulations and Solutions 
 
Mathematical Formulations 
 
Schematic diagrams illustrating the concepts, and initial and boundary conditions for the 
through-diffusion tests are given in Table I. The rate of change of concentration at a point in a one 
dimensional system is given by Fick’s second law (5, 6): 

2

2

x
cD

t
c

∂
∂

=
∂
∂                                                             (Eq. 1) 

In Table I and Eq. 1, A is cross-sectional area of specimen, L is the specimen length, is the 
constant or initial concentration in the source cell, and are the volumes of source and 
measurement cells, respectively, c is concentration; t is the time from the onset of the experiment; 
x is the distance along the specimen axis referenced from the inlet end; D is the 
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Table I.  Schematic Diagrams and Initial and Boundary Conditions for Through-Diffusion 
Tests 
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apparent diffusion coefficient, which reflects the effects of porosity, tortuosity and sorption. The 
total porosity of the test material is defined as the sum of “transport porosity” and “storage 
porosity”, which correspond, respectively, to pores aiding in transporting the species from one side 
of the specimen to the other and pores that are connected to transport pores but have a dead end. 
The latter contributes to the capacity of the pore system to hold dissolved species, but contributes 
nothing or little to the transport. Eq. 1 can then be written as follows (5): 
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Where totε  is the total porosity;  is the transport porosity;  is the sorption coefficient; +ε dK ρ  
is the density of the test material;  is the pore diffusion coefficient. pD
Comparing Eqs. 1 and 2 gives 
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Where is defined as the effective diffusion coefficient and += εpe DD ρεα dtot K+=  is defined 
as the rock capacity factor (5). 
By the above definitions, Eq. 1 can then be rewritten as follows: 
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Eq. 4 is similar to the equation describing one-dimensional transient flow of a compressible fluid 
through a saturated, porous, and compressible medium which combines the principle of 
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conservation of fluid mass in a deformable matrix and Darcy’s law for laminar flow through a 
hydraulically isotropic matrix (7). In this paper, we use Eq. 4 as the governing equation for 
describing diffusion through rock materials. Rigorous solutions to through-diffusion tests can be 
obtained by solving Eq. 4 together with the initial and boundary conditions illustrated in Table I for 
the individual types of diffusion tests. 
 
Constant Inlet Concentration - Constant Outlet Concentration 
 
The solution for the conventional type of diffusion test, i.e., constant inlet concentration 

 and constant outlet concentration ( 0),0( =tc ) ( )0),( =tLc , can be obtained as follows (5, 6): 
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The total or accumulated quantity ( )tQ  diffused into the outlet side reservoir, or measurement cell, 
after time t can be calculated as the time integral of the flux through the boundary , and can 
be derived as follows (5): 
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At long times, the exponential function in Eq. 6 approaches zero. Consequently,  at ( )tQ ∞→t  
or at the steady state approaches the linear relation 
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with a slope of  and an intercept on the time axis . By plotting the 
versus t curve and obtaining the slope at steady state measurement and the corresponding 

intercept on the time axis, both the effective diffusion coefficient, , and rock capacity factor, 

( LDcA e /1 ⋅⋅ ) )6/()( 2
eDL⋅α

)(tQ

eD
α , can be determined.  
 
If the species diffused into the outlet reservoir, i.e., the measurement cell, are not removed and the 
increase in concentration in the measurement cell is extremely low compared with the 
concentration  in the source reservoir, the concentration in the measurement cell can be 
approximated using Eq. 6, by dividing 

1c
( )tQ  with the measurement cell volume, . The effective 

diffusion coefficient and rock capacity factor can be similarly determined by plotting the 
concentration in the measurement cell versus time.  This latter method has been used by most 
researchers (4, 5, 8). 

dV

 
Constant Inlet Concentration – Increasing Outlet Concentration 
 
A theoretical expression for the constant inlet concentration – increasing outlet concentration 
through-diffusion test can be obtained from the solution of Eq. 4, together with the initial and 
boundary conditions illustrated in Table I by means of the Laplace transform method: 
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in which ( ) dVLA /⋅⋅= αβ  and mλ  are the roots of the following equation: 

λ
βλ =)tan(                                                               (Eq. 9) 

At long times, the exponential functions, or the second term on the right side of Eq. 8, approach 
zero. Consequently,  eventually reaches the value , i.e., the concentration in the source 
cell. 

( txc , ) 1c

 
Similar to Eq. 6, the total quantity ( )tQ  diffused into the measurement cell after time t can be 
calculated as the time integral of the flux through the boundary x = L, and can be derived as 
follows: 
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                    (Eq. 10) 

At long times, i.e., when the concentration in the outlet cell reaches the value of  and there is no 
more diffusion, the total quantity diffused into the measurement cell reaches a constant value. 

1c

 
Decreasing Inlet Concentration – Increasing Outlet Concentration 
 
The solution to the decreasing inlet concentration – increasing outlet concentration diffusion test 
can be derived from Eq. 4 together with the associated initial and boundary conditions illustrated 
in Table I using an approach similar to that used by Hsieh et al.(7) for deriving the exact solution 
for the transient pulse permeability test. Note that x in this paper is referenced from the inlet end 
(upstream end), rather than the outlet side (downstream end), and the symbols used here for the 
associated parameters are different from those used in (7). Thus, we obtain the exact solution for 
the decreasing inlet concentration – increasing outlet concentration diffusion test as follows: 
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where uVLA /)( ⋅⋅= αδ , ud VV /=γ  and mφ  are the roots of the following equation: 
( )
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Variations in source and measurement cells, i.e., ( )tc ,0  and ( )tLc , , can be calculated by 
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substituting x = 0 and x = L into Eq. 11. 
 
At long times, the exponential functions, or the second term on the right side of Eq. 11, approach 
zero. Consequently, concentrations at any point along the length of the specimen, , reach a 
certain constant value determined by the cross-sectional area and the length of the test specimen, 
the rock capacity factor, and the volumes of the source and measurement cells. 

( txc , )

 
Theoretical Simulations and Comparisons 
 
To illustrate the features of individual diffusion tests and compare the three types of diffusion tests, 
first, theoretical simulations were performed using the associated equations derived in the above 
section and the conditions tabulated in Table II. These hypothetical test conditions are determined 
with reference to the test conditions and results reported in a number of articles, such as references 
(1) to (5). Figures 1 to 3 illustrate the results of these theoretical simulations. Each test requires a 
relatively long time, up to several tens of days in the simulated case, to approach steady-state or 
equilibrium conditions. Examination of Eqs. 5, 8 and 11 shows that the lower the effective 
diffusion coefficient and/or the larger the rock capacity factor of the specimen, the longer will be 
the time required to establish steady state or equilibrium for each test. Unsteady or 
non-equilibrium conditions will also persist for a longer time if the specimen length, L, is 
increased. Examination of Eqs. 6 and 10 shows that the use of a specimen with a larger 
cross-section will facilitate the measurement of concentration variations because changes in 
concentration are proportional to the cross-sectional area of test specimen, A. Although an 
expression for the diffused quantity is not shown for the decreasing inlet concentration – 
increasing outlet concentration diffusion test, the same conclusion can be drawn for this test 
method. 

 
Table II.  Hypothetical Test Conditions for the Theoretical Simulations of 
Through-Diffusion Tests 

Cross-sectional area, A (m2) 3.85E-3 
Length, L (m) 1.00E-2 

Effective diffusion coefficient, De (m2/s) 2.50E-13 Specimen 

Rock capacity factor, α  3.50E-2 
Volume, Vu (m3) 4.00E-6 Source cell Concentration, c (ppm) 127000 
Volume, Vd (m3) 4.00E-5 Measurement cell Concentration, c (ppm) 0 

 
Figure 1 shows the simulated results for the constant inlet concentration – constant outlet 
concentration diffusion test in which a) and b) illustrate the time-dependent variations of 
concentration distribution across the specimen axis and the total diffused quantity through the 
cross-section of the outlet end of the specimen, respectively. At the onset of the experiment, the 
concentration at the inlet end of the specimen is suddenly increased. Concentrations at points along 
the specimen axis gradually increase, finally reaching a linear distribution, which means the 
diffusion through the specimen reached a steady-state condition (Figure 1a). This steady-state 
condition corresponds to the linear portion in the curve of total diffused quantity versus time 
(Figure 1b). 
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Figure 2 shows the simulated results for the constant inlet concentration – increasing outlet 
concentration diffusion test in which a), b) and c) illustrate the time-dependent variations of 
concentration across the specimen axis, time-dependent variations of concentration in the 
measurement cell and the total diffused quantity through the cross-section of the outlet end of the 
specimen, respectively. At the onset of the experiment, the concentration at the inlet end of the 
specimen is suddenly increased. Concentrations at points along the specimen axis gradually 
increase, finally reaching the concentration of the source solution (Figure 2a). The concentration in 
the measurement cell and the total diffused quantity through the cross-section of the outlet end of 
the specimen increase slowly at an early stage of the experiment, then increase nearly linearly, and 
finally converge to a certain value (Figure 2b and c). At this equilibrium state, there will be no 
more diffusion through the specimen. In quantifying the errors associated with using Eq. 6, i.e., the 
conventional time-lag method, to estimate the effective diffusion coefficient and rock capacity 
factor from the constant inlet concentration – increasing outlet concentration diffusion test, the 
values of the two parameters are determined from the curves shown in Figure 2b and c using the 
data up to different concentration levels, viz., , ,  and . These results are 
tabulated in Table III, in which the relative errors are defined as follows: 
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The subscripts determined and input refer, respectively, to the data determined from the curve in 
Figure 2c using Eq. 6 and input for simulating the curve in Figure 2c. 
If the solution in the measurement cell is not replaced with fresh solution to maintain the 0 
concentration condition at the outlet end of specimen, and the data are interpreted using the 
conventional time-lag method, there will be a tendency to underestimate both the effective 
diffusion coefficient and rock capacity factor. The higher the concentration increase in the 
measurement cell, the larger will be the error in estimating the two parameters. To avoid the  
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b) Total diffused quantity through a cross-section of the outlet end of the specimen
  

Fig. 1.  Simulated results of constant inlet concentration – constant outlet  
concentration diffusion test 

 
cated procedure of replacing the solution in the measurement cell during the test and to 
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ter identification technique to back-calculating the effective diffusion coefficient and rock 

ty factor by using Eqs. 8 and 9 is illustrated in the next section. 

 3 shows the simulated results for the decreasing inlet concentration – increasing outlet 
tration diffusion test in which a), b) and c) illustrate the time-dependent variations of 
trations within the specimen, in the source cell and in the measurement cell, respectively. At 
et of a test, the concentration at the inlet end rapidly increases and then gradually decreases. 

ntrations at other points along the specimen axis change systematically and eventually 
ch an equilibrium state (Figure 3b). Detecting the concentration decrease in the source cell 
ght to be easier and faster (Figure 3 a) than measuring the concentration increase in a 
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alculating the effective diffusion coefficient and rock capacity factor from the 
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y using Eqs. 11 and 12. 
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a) Variations of concentration in source cell  
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 to the latter two laboratory through-diffusion tests, i.e., the constant inlet 
 outlet concentration and decreasing inlet concentration-increasing outlet 
est, are rigorous (Eqs. 8, 9; Eqs. 11, 12), and it is difficult to determine 
 diffusion coefficient and rock capacity factor of a specimen from 
nts. Although graphical methods may be used to quantify these 

nd of test, the attendant procedures may be cumbersome and their 
mited. In this paper, we propose a numerical inverse method to 
ort properties of a test specimen. This method is based on a parameter 
eloped in the general context of systems engineering (9) and has been 
roblems, structural problems, and model tests. In our previous studies, we 
plied this method to both laboratory and in-situ permeability tests (10, 11). 
 method is to back-calculate the values of associated parameters by 
efined error function that represents a least-squares reduction of the 
 measured and theoretically calculated results. For the case of diffusion 
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tests, an error function can be defined as tests, an error function can be defined as 
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for the constant inlet concentration – increasing outlet concentration diffusion test. Here N is the 
number of measured data points,  and ( )itQ ( )*itQ  are the total quantity diffused into the 
measurement cell measured up to time  and the corresponding data obtained theoretically from 
Eq. 10, respectively. Since the analytical concentration data depend on the values of the effective 
diffusion coefficient  and the rock capacity factor 

it

eD α , the error function is, in turn, also 
dependent on these two parameters. Consequently, Eq. 14 can be rewritten as follows: 
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For the decreasing inlet concentration – increasing outlet concentration diffusion test, the error 
function can be similarly defined as 
For the decreasing inlet concentration – increasing outlet concentration diffusion test, the error 
function can be similarly defined as 
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where  and Q  are the concentrations measured at time  and the corresponding data 
obtained theoretically from Eqs. 11 and 12. In principle, the concentrations measured in the source 
cell and/or the measurement cell can be used as measured data for the back-calculation. 

where  and Q  are the concentrations measured at time  and the corresponding data 
obtained theoretically from Eqs. 11 and 12. In principle, the concentrations measured in the source 
cell and/or the measurement cell can be used as measured data for the back-calculation. 
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The error functions in Eqs. 15 and 16 are highly nonlinear functions of the parameters  and eD α , 
and their characteristics cannot be analyzed theoretically. Here we use a numerical approach to 
investigate the particular behavior of these error functions. It will be helpful for us to evaluate 
whether the parameters  and eD α  can be accurately back-calculated from the measurements 
through minimizing the error functions defined by Eqs. 15 and 16. 
  
The data numerically generated in the previous section are used as “experimental data” and the 
values of  and eD α  are thought to be “real values”. The relationships between the error 
functions and each of the parameters can be graphically represented (Figure 4) by varying one 
parameter across a certain span of magnitude and maintaining the other parameter constant and 
equal to its “real value”. The error curves are convex in the neighboring domains of the “real 
values” of the parameters. Therefore, it is possible to uniquely quantify the magnitudes of the 
parameters from real measurements by minimizing the error functions defined. 
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for the constant inlet concentration – increasing outlet concentration diffusion test. Here N is the 
number of measured data points,  and ( )*itQ

it

eD

 are the total quantity diffused into the 
measurement cell measured up to time  and the corresponding data obtained theoretically from 
Eq. 10, respectively. Since the analytical concentration data depend on the values of the effective 
diffusion coefficient  and the rock capacity factor α , the error function is, in turn, also 
dependent on these two parameters. Consequently, Eq. 14 can be rewritten as follows: 
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eDThe error functions in Eqs. 15 and 16 are highly nonlinear functions of the parameters  and α , 
and their characteristics cannot be analyzed theoretically. Here we use a numerical approach to 
investigate the particular behavior of these error functions. It will be helpful for us to evaluate 
whether the parameters  and eD α  can be accurately back-calculated from the measurements 
through minimizing the error functions defined by Eqs. 15 and 16. 

The data numerically generated in the previous section are used as “experimental data” and the 
values of  and eD α  are thought to be “real values”. The relationships between the error 
functions and each of the parameters can be graphically represented (Figure 4) by varying one 
parameter across a certain span of magnitude and maintaining the other parameter constant and 
equal to its “real value”. The error curves are convex in the neighboring domains of the “real 
values” of the parameters. Therefore, it is possible to uniquely quantify the magnitudes of the 
parameters from real measurements by minimizing the error functions defined. 
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a) Constant inlet concentration – increasing outlet concentration diffusion test
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 b) Decreasing inlet concentration – increasing outlet concentration diffusion test
Fig. 4.  Characteristics of error functions 

UDING REMARKS 

 the laboratory diffusion test is a well-established and widely adopted approach for 
izing the transport properties of geological materials, conventional through-diffusion 
 be time-consuming, cumbersome and may cause errors in quantifying the effective 
 coefficient and rock capacity factor due to the difference between actual test conditions 
tical assumptions. To address these issues, we derived rigorous solutions that consider 
ntration variations either in measuring or in both measuring and source cells. Using these 
solutions, a theoretical evaluation of the conventional through-diffusion test is performed 

panion approach for back-calculating the effective diffusion coefficient and rock 
from a diffusion test is proposed. Conclusions drawn from this study can be summarized 
s: 
 solution in the measurement cell is not replaced with fresh solution to maintain the zero 
ntration condition at the outlet end of the specimen, and the data are interpreted using the 
ntional time-lag method, there will be a tendency to underestimate both the effective 
ion coefficient and rock capacity factor. The higher the concentration increase in the 

urement cell, the larger will be the error in estimating the two parameters. 
ffective diffusion coefficient and rock capacity factor can be uniquely back-calculated 
the measurements of the constant inlet concentration – increasing outlet concentration 
ion test and decreasing inlet concentration – increasing outlet concentration diffusion test 
ing the rigorous theoretical solutions derived in this paper as well as the parameter 
ification technique. 
mproved technique proposed in this paper enables the use of the data continuously 
ured in the measurement cell or both source and measurement cells. This, in turn, may 
 automation of laboratory diffusion tests if the concentrations can be automatically 
ted by appropriate sensors. Thus, test management may become easier and test efficiency 
e highly increased. 

ngs obtained in this study offer practical considerations in effective implementation of a 
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diffusion test and in proper interpretation of the test results. To further verify the conclusions 
obtained in this theoretical study, a series of laboratory through-diffusion tests is currently in 
progress. 
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