WM 2017, 2017. 3. 08, Phoenix Convention Center

LEE, Jong-Youl

[Radioactive Waste Disposal Research Div.]

DBD Key Technologies/Challenges

Depth (km)	Rock	Temp. (° C)	Hydrostatic Pressure (Mpa)	Hydraulic Conductivity (m/s)	Ground Water	Disposal Environ.
3~5	Granite	130 – 170	57 (Brine W.)	10 ⁻¹⁶ ~ 10 ⁻¹⁹	Shallow GW - Deep GW	Reducing

Technologies	Technical Challenges	
 Drilling technology for large 	 Depth 3~5 km, Large Dia. (40–60 cm) 	
diameter deep borenole		
 Investigation technology for very 	 Depth 3~5 km 	
deep geology	 Site Characterization 	
 Disposal concept development 	 DBD Canister, Sealing, Disposal system 	
technology	 Operation Technologies 	
 System performance/Safety 	 Performance Criteria, 	
assessment technology	 Safety Assessment Scenarios 	
 Demonstration technology 	 Demonstration Test : In-situ Test 	

Contents

3

1 Outline of DBD Study in KAERI

Item	Progress	Remark
Preliminary Review of Geological data	Data from Geothermal project	
	 Development of a DBD system concept 	
Preliminary DBD	- a DBD Disposal container concept	
Concept	- a DBD Sealing and Plugging concept	
	- a DBD system concepts	
	Preliminary performance & safety assessment	
	• DBD system thermal analyses	
	• Borehole spacing analyses	
Analyses & etc.	•Manufacture of SiC inner vessel of disposal container	
	- 1/10 th of real size	
	Canister handling system & sealing experiment	

4

2 DBD System Concept – Review of Geologic. Data

2 DBD System Concept

- Sealing area (3,000 0 m)
 - Wall Dia. : 550 mm
 - Casing Dia. : 500 mm
 - Oconcept
 - Bentonite/SiC : Dep. 3,000 m 1,500 m
 - Granite/Bentonite : Dep. 1,500 m surface
- Disposal area (3,000 5,000 m)
 - Wall Dia. : 500 mm,
 - Casing Dia. : 440 mm
 - **O** HLW Emplacement : 400 containers
 - Disposal Container String
 - 10 Disposal container : 48.5 m
 - 40 Disposal container strings/borehole

3 DBD Container Concept

Disposal Container for DBD : Double Layered (Sic + Stainless Steel)

3 DBD Container Concept

DBD Container

- Primary Barrier in a Repository
 - > To withstand the High Pressure
 - High Corrosion Resistance
- SiC Ceramic : Inner Container
 - High Strength & Corrosion resistance & Thermal Conductivity
 - Low Diffusivity
- Corrosion Resistance test
- In-situ long-term corrosion test
 - : in KURT(KAERI Underground Tunnel)

Manufacture of SiC container

3 DBD Container Concept — Handling System

- 3. Joint device body, 4. Piston head of hook box,
- 5. Hook, 6. Hook spring, 7. Sliding joint bar, 8. Pushing bar.

3 DBD Container Concept – Handling System

10

Concluding Remarks

- In Korea, very preliminary concept development for Deep Borehole
 Disposal is being carried out.
- In this study, concepts of a DBD disposal container and a handling system for the disposal container in a borehole were developed.
- ${\bf O}$ With this concept, a container of 1/10 scale was manufactured and a

handling experiment was carried out.

• These results will be used as an input for the analyses of applicability for DBD in Korea.

한국원자력연구원 Korea Atomic Energy Research Institute

감사합니다 Thank You for Your Attention !

3 General Progress – Thermal Analyses

한국원자력연구원 KAERI Korea Atomic Energy Research Institutu

HLW Disposal Research Division

3 General Progress – Thermal Analyses (D. Zone)

Results of Thermal Analyses at the depth of 5000m

3 General Progress – Borehole Spacing Analy.

- < 400 °F (Around 200 °C)</p>
 - : 50 m at the depth of 5000 m
- Min. Spacing at the depth of 5 km
 - :50 m
- Verticality of Deep Borehole
 : 0.6 deg -> 50 m

Thermal Analyses results at the depth of

50 -150 m