

# Deep Borehole Disposal - a solution for HLW in Germany?

**Dr. Frank Charlier, Prof. Dr. Bruno Thomauske**Guido Bracke, Axel Liebscher, Frank Schilling, Thomas Röckel





#### **Deep Borehole Disposal - a solution for HLW in Germany?**

#### Content

- 1. Final Disposal in Germany
- Site Selection Commission
- New Site Selection Process
- 4. Deep Borehole Disposal







# **Final Disposal in Germany**





#### Restart of the site selection (HLW-repository)

#### 2011

- Broad political consensus in Germany to phase out nuclear power
- Consensus to terminate the long lasting conflict with respect to final disposal
  of high active heat generating waste

#### 2013

Decision to restart the site selection for a final disposal site HLW

- Consensus to restart process to select a site for high active and heat generating waste
- The decision was made that the law should be evaluated by a commission

#### 2014 - 2016

The Commission prepared a report : May 2014 – July 2016





## **Present Waste Management Concept**

| Project                                    | Geology /<br>Formation      | Purpose                                                          | Actual Status                                                         | Waste                             |
|--------------------------------------------|-----------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------|
| HLW / New<br>Site Selection<br>2017-≥ 2050 | Salt<br>Clay<br>Crystalline | Repository for high-<br>level and heat-<br>generating waste      | Proposal of the<br>Site Selection<br>Commission to be<br>implemented  | 17,000 t<br>HLW/spent fuel        |
| LLW/ILW<br>Konrad<br>since 1982            | Iron ore                    | Repository for long- lived waste with negligible heat generation | Licence issued 2002  Start of operation ≥ 2022  Operation: ≈ 35 years | 300,000 m <sup>3</sup><br>LLW/ILW |







# **Site Selection Commission**





#### **Main Results**

- The Final-Disposal-Commission agreed that the target of a new site selection process is to find a disposal site with the relatively best-possible safety.
- A site selection procedure with the goal of finding the "site with the best-possible safety" would necessarily have to be a comparative procedure.
- The Repository Site Selection Act therefore has the objective of applying a comparative procedure to identify the best site for a repository for final disposal for a period of one million years.
- No export for spent fuel (also not for research reactors)
- New organisations new responsibilities
- The main option is the disposal in deep underground mine
- The site selection is a 3-phases-process with an intensive public involvement







# **New Site Selection Process**





#### Targets of the site selection procedure

#### **Overall Target**

- To define a site for which the licensing procedure can be granted
- To select a site which provides the best possible safety for ≥ 1 mill. years

#### Consensus

- A site for the disposal of HLW should be found in a nation wide consensus
- Participation of the citizens in all steps of the site selection process as a basis for acceptance
- Relevant decisions have to be made by the Parliament and the Federal Assembly

#### Safety

Safety is a priority

#### Time frame

The timeframe is not a priority





#### Site selection criteria

Exclusion Criteria

Minimum Criteria Weighting Criteria Safety requirements and requirements for safety investigations

Planning Criteria





## **Site selection steps / phases**

|    | Measures                                                                                                                                                                                                        | Regions / Sites |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| P1 | Start with a <b>white map</b> , application of exclusion criteria and minimum criteria                                                                                                                          | > 20-30         |
| P2 | Selection of sites for investigation from above ground, application of exclusion criteria and minimum criteria application of geoscientific weighting criteria application of socio-economic weighting criteria | 6-8             |
| P3 | Selection of sites for investigations from below ground                                                                                                                                                         | 2-3             |
|    | Selection of one site for licensing                                                                                                                                                                             | 1               |





## Site selection according the site selection law

| Timetable   | Activities                                                                                                                           |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 2013        | Enaction of the site selection act                                                                                                   |
| 2014 - 2016 | Evaluation of the act                                                                                                                |
| 2017        | Modification of the site selection act                                                                                               |
| 2017 - 2031 | Site selection, determination of the repository site/location starting with a "white" German map                                     |
| 2031 - 2050 | Detailed site selection, disposal concept, safety analysis, licensing procedure, granting of the license, erection of the repository |
| ≈ 2050      | Start of operation                                                                                                                   |

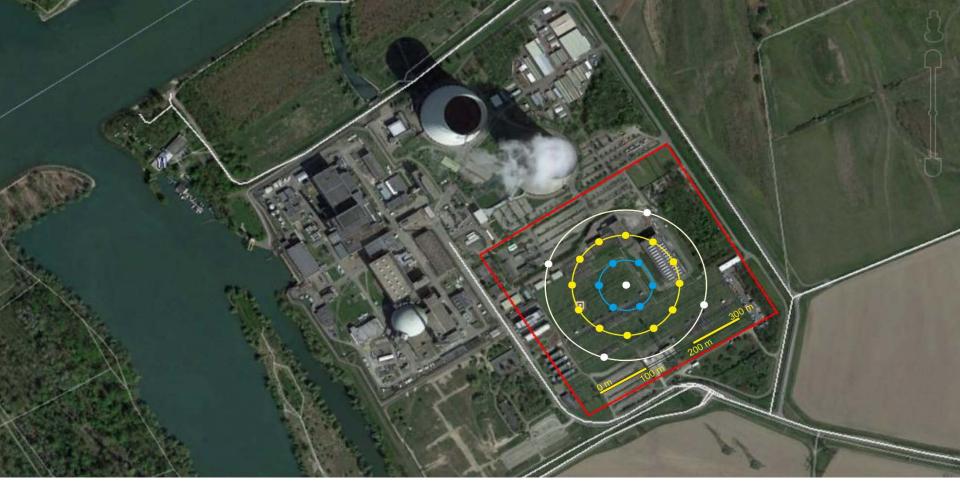




#### **Considered Disposal Options (Paths)**

The commission has analyzed the different potential solutions to dispose HLW.

• The preferred solution - called path - based on the present state of the art is the final disposal in deep geological formations in a mine.


Potential host rocks: Salt, Clay, Cristalline

Besides that, other potential solutions were considered. These so-called sub-paths were:

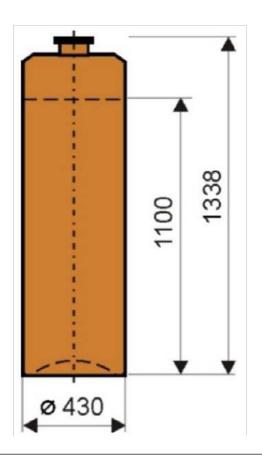
- Final disposal in deep boreholes
- Long-term interim storage
- Transmutation







**Deep Borehole Disposal** 



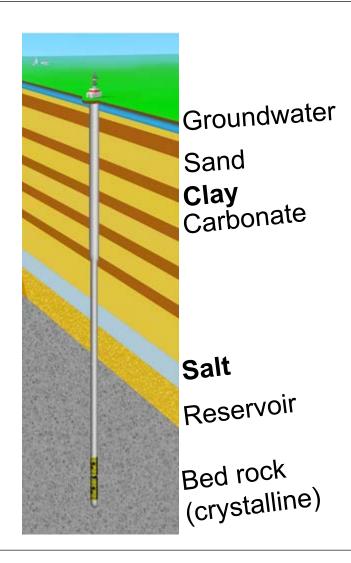



## **HLW in Germany**

- Spent fuel elements
- Vitrified waste
- Spent fuel pebbles









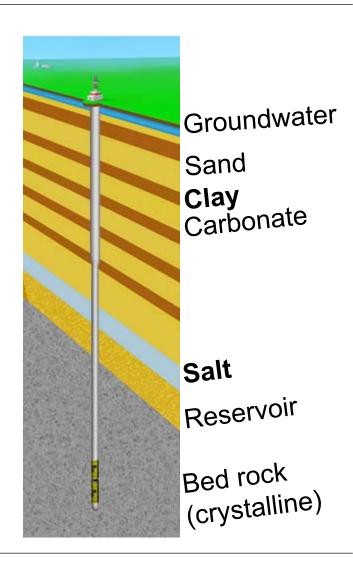



#### **Deep Borehole Disposal - Concept**

- Disposal depth of 1500 3500 m
- Multiple barrier system with clay and salt layers (alternating strata)



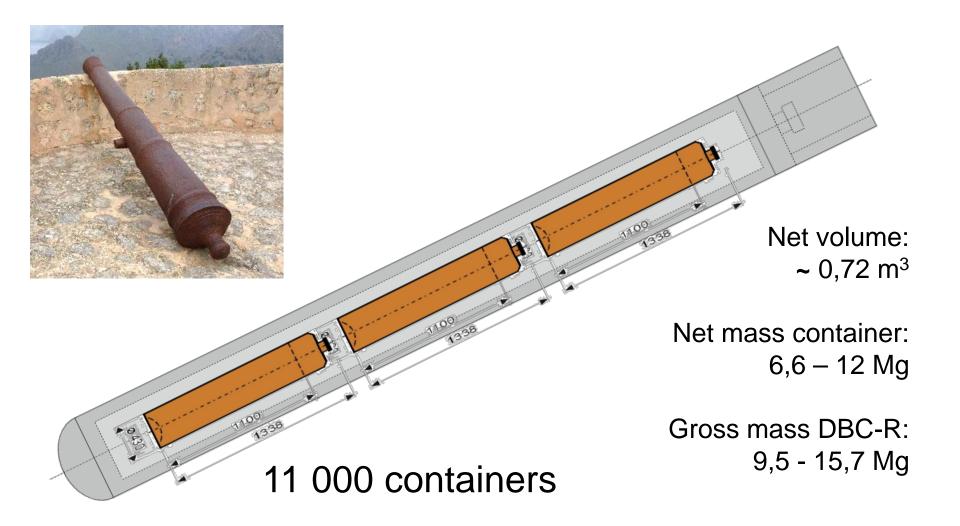





#### **Deep Borehole Disposal - Concept**

- Disposal depth of 1500 3500 m
- Multiple barrier system with clay and salt layers (alternating strata)

## Requirements / Questions


- Diameter of borehole?
- Container?
- Availability in Germany?
- Reversibility?

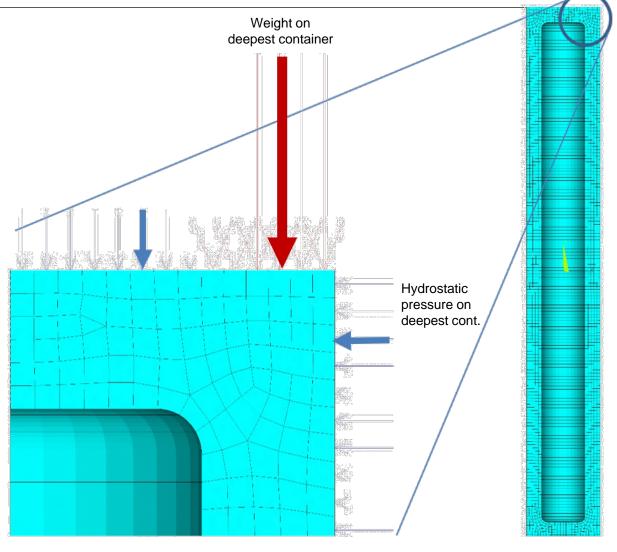






#### **Deep Borehole Container – Retrieval (DBC-R)**

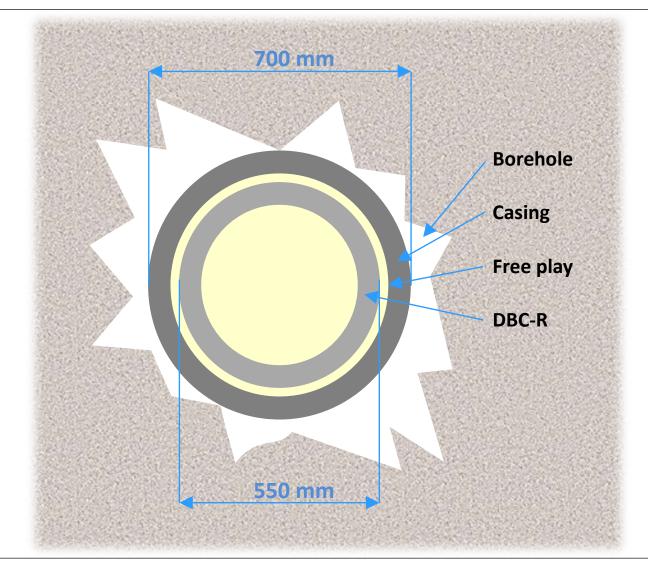







## Requirements for container (wall thickness)

- Stacking
- Temperature / pressure
- Corrosion
- Tightness
- Retrievability / recoverability


•







## Casing / container







## How many boreholes?

| Disposal depth  | Wall thick-<br>ness DBC-R | DBC-R per<br>borehole | Number of<br>boreholes | Diameter of borehole |
|-----------------|---------------------------|-----------------------|------------------------|----------------------|
| 3 000 - 3 600 m | 4.5 cm                    | 103                   | 107                    | 75 cm                |
| 3 000 - 4 200 m | 6.5 cm                    | 205                   | 55                     | 80 cm                |
| 3 000 - 5 000 m | 10 cm                     | 363                   | 31                     | 90 cm                |



#### **Research and Development**

- Borehole diameter of 0.75 m beyond today's standard shelf technology
- Considered feasible for 3 600 m
- Concept to be detailed (e. g. container, monitoring, technology)
- Operational and long-term safety analyses
- Feasibility demonstration (drilling, disposal and retrievability)
- Development of containers for recoverability for 500 years







## Some advantages ⇔ and disadvantages

- Multiple barrier system (great depth)
- Manless disposal
- Several sites possible
- No proliferation
- **√** ..

- Research and development
- Exploration for every drilling site
- Corrosion of containers
- Recoverability
- ..





#### **Deep Borehole Disposal - a solution for HLW in Germany?**

DBD should / could be a feasible and alternative technical option for deep geological disposal in Germany.

#### **Conclusions**

- Active support of research and development is needed
- The requirement of recoverability for 500 years should be reconsidered





## Session 98 / Today / 103AB / 03:20 pm



# Site Selection Restart in Germany – Results of the Site Selection Commission

Prof. Dr. Bruno Thomauske Dr. Frank Charlier











## Deep Borehole Disposal - a solution for HLW in Germany?

**Dr. Frank Charlier, Prof. Dr. Bruno Thomauske**Guido Bracke, Axel Liebscher, Frank Schilling, Thomas Röckel



