

Deep Borehole Disposal International Drivers

Andrew Orrell Section Head, Waste & Environmental Safety Department of Nuclear Safety and Security

> Waste Management 2017 Session 081 March 8, 2017

Topics

- Safety Objective
- Why DBH?
- Disposal Challenge
 - Cost and Acceptance (EU example)
 - DBH: A solution for who, what?
- Other Issues

Fundamental Safety Premise

- The fundamental safety objective is to protect people and the environment from the potential for harmful effects of radioactive waste.
- To manage the waste burden through permanent disposal in a manner that protects the accessible biosphere*
- The strategy to achieve this fundamental safety objective is to contain and isolate, the waste from the accessible biosphere, to the extent that is necessary to have reasonable confidence that the uncertainties of e.g. 1Myr timeframes are addressed.
 - Disposal facilities are to be developed in such a way that people and the environment are protected both now and in the future
 - To leave future risks no greater than one would accept at present.

*groundwater and other resources used by or accessed by people).

Why DBH? Common Issues of Mined Repositories

 Coupling between the surface and near-field disposal environment and dose assessment

Extorna

Pathwa

Deep Borehole Disposal Concept FEP Screening with Depth (isolation)

Safety Case / PA Development Time/Cost

Common Issues Cost and Availability

Brussels, 4.4.2016 SWD(2016) 102 final

COMMISSION STAFF WORKING DOCUMENT Accompanying the document

Communication from the Commission

Nuclear Illustrative Programme presented under Article 40 of the Euratom Treaty for the opinion of the European Economic and Social Committee

{COM(2016) 177 final}

Nuclear reactors in shut down status per EU MS and technology (PRIS Jan 2016)

	BWR	FBR	GCR	HTGR	HWGCR	LWGR	PHWR	PWR	SGHWR	Total
BE								1		1
BG								4		4
DE	9	1		2	1		1	14		28
ES	1		1					1		3
FR		2	8		1			1		12
IT	2		1					1		4
LT						2				2
NL	1									1
SE	2						1			3
SK					1			2		3
UK		2	27						1	30
Total	15	5	37	2	3	2	2	24	1	91

Decommissioning Strategy

Immediate dismantling	Deferred dismantling	No preferred option
Belgium	Finland (Olkiluoto)	Czech Republic
Bulgaria	Hungary	Germany
Spain	Netherlands (Dodewaard)	
Finland (Loviisa)	Romania	
France	United Kingdom	
Croatia Italy ^(Note 1)		
Lithuania		
Netherlands (Borssele)		
Sweden		
Slovenia		
Slovakia (Note 2)		

- Note 1 Italian NPPs have been formally under an operating mode status for many years after stopping producing electricity.
- Note 2 Decommissioning plans for JE V2 have not been decided and consider both options as possible. Source: (Slovakian National Nuclear Fund, 2014).

Nuclear Illustrative Programme presented under Article 40 of the Euratom Treaty for the opinion of the European Economic and Social Committee {COM(2016) 177 final}

Estimated costs of decommissioning EU NPPs

MS	Estimated		Total NPP	s	Estimated cost of	Estimated cost of
	Decommissioning costs (EUR billion, note 1)	Units	Capacity (MWe)	Average capacity	decommissioning (EUR billion per unit)	decommissioning (EUR billion per GWe)
BE ¹²³	3,7	8	5 931	741	0,5	0,6
BG ¹²⁴	3,0	6	3 558	593	0,5	0,8
CZ	1,5	6	3 904	651	0,3	0,4
DE	38,0 (note 2)	36	26 375	733	1,1	1,4
ES	4,5	10	8 188	819	0,5	0,6
FI ¹²⁵	1,0	4	2 752	688	0,3	0,4
FR	22,6	70	66 919	956	0,3	0,3
HR	0,2	0,5 (note 3)	344	344	0,4	0,6
HU	1,2	4	1 889	472	0,3	0,7
IT	Not available	4	1 423	356	NA	NA
LT	2,6	2	2 370	1 185	1,3	1,1
NL	Not available	2	537	269	NA	NA
RO ¹²⁶	1,4	2	1 300	650	0,7	1,1
SE	3,4	13	10 861	835	0,3	0,3
SI ¹²⁷	0,2	0,5 (note 3)	344	344	0,4	0,6
SK ¹²⁸	3,1	9	3 665	407	0,3	0,9
UK ¹²⁹	36,9	45	13 598	302	0,8	2,7
Totals Note 4	123,3	222	151 998	704	0,6	0,8

Source: Nuclear Illustrative Programme presented under Article 40 of the Euratom Treaty for the opinion of the European Economic and Social Committee {COM(2016) 177 final}

Waste management estimates reported by Member States (including costs for the building of geological repositories)

MS	Estimated Waste Lifetime electricity supplied from				/h]	Estimated cost of	
	Management costs (EUR billion)	Average lifetime load factor ¹³²	Actual electricity supplied as of Sep 2015	Estimated future electricity supplied, considering official LTOs	Total	waste management (EUR per MWh)	
BE ¹³³	7,0	84%	1 399	349	1 748	4,0	
BG	0,5	65%	518	288	807	0,6	
cz	5,0	82%	515	819	1 334	3,8	
DE Note 1	7,7	88%	4 836	398	5 234	1,5	
ES ¹³⁴	10,0	85%	1 740	1 297	3 037	3,3	
FI	5,6	91%	697	344	1 041	5,4	
FR ¹³⁵	45,8	73%	11 873	9 203	21 076	2,2	
HR	0,5	84%	78	60	138	3,7	
HU	4,3	86%	389	234	624	6,8	
IT	Not available	NA	143	0	143	NA	
LT	3,2	NA	311	0	311	10,3	
NL	Not available	84%	148	54	202	NA	
RO	2,8	92%	133	315	448	6,3	
SE	7,6	75%	2 200	1 186	3 386	2,2	
SI	0,5	84%	78	60	138	3,7	
SK	5,0	81%	412	295	707	7,1	
UK	24,1	70%	2 629	817	3 445	7,0	
Totals	129,6	77%	28 098	15 718	43 816	3,0	

Source: Nuclear Illustrative Programme presented under Article 40 of the Euratom Treaty for the opinion of the European Economic and Social Committee {COM(2016) 177 final}

Country Nuclear Power Profiles

http://cnpp.iaea.org/pages/index.htm

Argentina	China	Indonesia	Mexico	Slovakia	Turkey
Armenia	Czech Republic	Iran, Islamic Republic of	Morocco	Slovenia	Ukraine
Bangladesh	Egypt	Italy	Netherlands	South Africa	United Arab Emirates
Belarus	Finland	Japan	Nigeria	Spain	United Kingdom
Belgium	France	Jordan	Pakistan	Sweden	USA
Brazil	Germany	Kazakhstan	Philippines	Switzerland	Viet Nam
Bulgaria	Ghana	Korea, Republic of	Poland	Syrian Arab Republic	
Canada	Hungary	Kuwait	Romania	Thailand	
Chile	India	Lithuania	Russia	Tunisia	

Boldface indicates countries with NPPs

IAEA

Mexico BWR Spent Fuel Management

 Used nuclear fuel from the Laguna Verde reactors is stored underwater at the site. The storage pools have been re-racked to provide enough space for the reactors' entire lives. About 1200 tonnes of used fuel exists at present. The same strategy of on-site storage is employed with used fuel from research reactors.

Mexico

2.7. Fuel cycle including waste management

- As for spent nuclear fuel, the current plans are to store it at the reactors' pools. These have been reracked to increase the original capacity in order to accommodate the spent fuel that the reactors will produce during their expected operating life. This plan gives CFE time to make a more definite decision on long-term storage methods, dependent on future developments in uranium availability and price, expansion of the Mexican nuclear power capacity, new technologies, etc.
 - [In 2014, the Laguna Verde nuclear power plant finalised a contract for independent spent fuel storage installation services for both units.]

14

Mexico - Financial

- Given the magnitude of the resources required, it is critical to plan for the acquisiton of funds as soon as possible
- Required amount : 4,700 Million dollars in:
 - SF Temp. Facility 2015 (456 Million)
 - LILW Repository 2020 (873 Million)
 - Deep Geological Rep. 2045 (2,195 Million)
 - LV Decommissioning 2060 (770 Million)

• A debt that cannot be left to future generations

Global Perspective – Disposal of HLW / SNF

- Disposal solutions are particularly challenging for:
 - Countries with small nuclear programmes,
 - Countries with nuclear applications only,
 - Nuclear newcomer countries
- Nuclear newcomer countries embracing nuclear power defer the issue of disposal
 - It is not a requirement to have disposal capacity in place a-priori to power production, only a plan.

Other Concerns

- Retrievability
- Need for mined space
- Stuck Packages

- Competition with other programs
- ???

Conclusion

- DBH is A solution, not THE Solution
 - Optimization is possible with OPTIONS
 - Disposal needs options...
- Solve the problem

Thank you!