

ANDREWS, TEXAS

WCS Update for Waste Management March 2017

WCS Safety and Quality Focus

- WCS maintains a strong, overarching commitment to safety and quality.
- WCS promotes a safety culture consistent with the best nuclear utilities and DOE sites:
 - Trust-based organization
 - Open communication free from concerns over reprisal
 - All workers have right and obligation to report safety and quality concerns

WCS Current Facilities

LSA Pad Federal Facility Byproduct Facility **Compact Facility Hazardous Waste** Landfill Administration Buildings and Treatment Facility

Disposal and Service Capabilities

Commercial Waste

 In- and Out-of-Compact Class A, B, and C LLRW

Federal Waste

 Federal Class A, B, and C LLRW and MLLRW

Low Activity

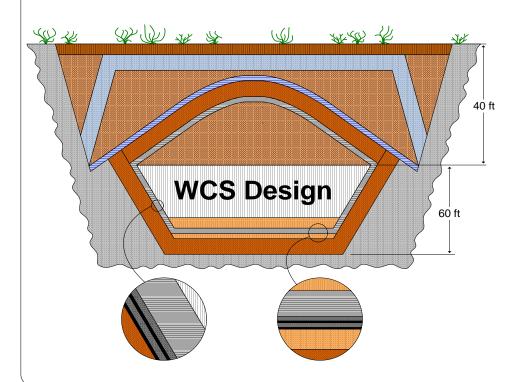
 Certain low activity waste in Hazardous Waste Landfill

Transportation

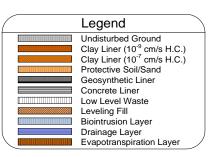
- 3 state-of-the-art Type B Casks
- 2 Type A Casks

Processing

Dewatering, Stabilization, Repackaging



CWF and FWF Landfill Disposal Design

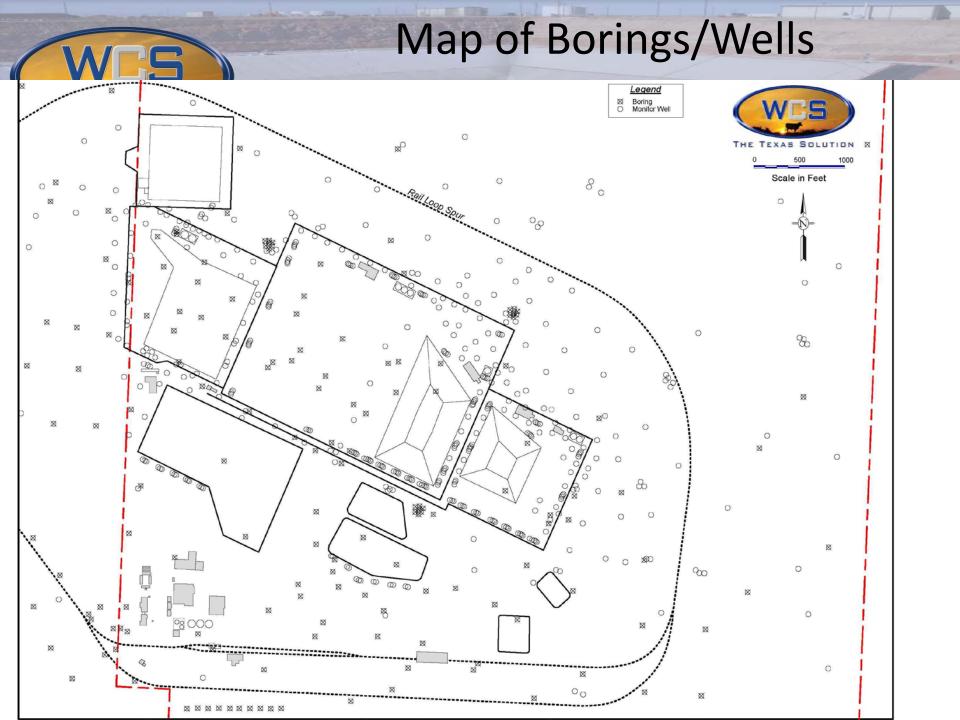


WCS CWF and FWF Landfill Design Andrews, TX

WCS Landfill Liner Design

- Multi-layered cover system up to 45 feet thick
- Depth to waste at least 25 feet below surface
- 7 ft. liner system on top of red bed clay which is less permeable to water than concrete and 600 feet thick
- Closest measurable water
 225 feet

WCS CWF – Native Clay


WCS Compact Facility (New Industry Standard)

Groundwater Monitoring

- Over 640 borings determined geologic characteristics and confirmed WCS is not over an aquifer
- Over 400 monitoring wells that are measured quarterly, many of which are dry
- Approximately 150 monitoring wells are laboratory sampled semi-annually, if there is enough water

Groundwater Characteristics

- WCS is not above or adjacent to any underground drinking water supply
- Texas Water Development Board map confirms site characteristics
- Hydraulic conductivity of clay is $1x10^{-9}$ cm/sec and the 225-foot zone is $1x10^{-8}$ cm/sec
- Horizontal groundwater travel is 4 feet (1.3 meters) per 1,000 years
- Groundwater is ~16,000 years old

WCS License Status and Capacity

Licensed LLW Disposal Capacity

TX Compact Waste Disposal Facility:

- 9,000,000 cubic feet and 3,890,000 curies
- TCEQ has taken ownership of Texas Compact Landfill and WCS leases it back for operations

Federal Waste Disposal Facility:

- 26,000,000 cubic feet and 5,600,000 curies total
- DOE signed Agreement to take ownership of the Federal Landfill after post-closure
- License Term through September 2024 with provision for 10-year renewals thereafter

WCS RT-100 Type B Cask

- 3 RT-100 Type B casks commissioned in 2014
- RT-100 is 76,500 lbs; made of stainless steel with lead shielding and can transport containers up to 160 cubic feet with dose rates to 500R/hr.
- Hauled by team drivers on a specially designed trailer using EPA certified zero emissions tractors

Potential Future WCS Operations

GTCC Disposal

 Waste that was not generally suitable for near surface disposal in the 1980s can be demonstrated suitable in 2017 at WCS.

At WCS:

- Deeper depth of disposal
- Multiple intrusion barriers
- Minimal rainfall
- High rate of evapotranspiration
- Lack of potable water, etc.
- Historical scenarios at other facilities do not reflect modern disposal practices, especially in an arid environment like at WCS.

Barnwell

WCS

Proposed Interim Storage Project Scope

- Environmental impacts analyzed with storage of 40,000 MTHM.
- 8 separate phases; storage of up to 5,000 MTHM in each phase.
- License for 40 years with multiple renewals of up to 20 years each.
- Initial SAR includes selected AREVA NUHOMS® and NAC International storage systems which prioritize shutdown sites.
 - Additional systems and sites to be added in future License Amendments.
 - Storage of used fuel from over 12 shutdown/decommissioned nuclear power plants will fit in Phase 1.
- Allows flexibility to transition beyond storage of fuel from currently decommissioned reactors.
- Ongoing discussions with DOE and the U.S. Congress on how to integrate the availability of an interim storage facility into the national strategy for used nuclear fuel management.

Location of CISF

POTENTIAL SITE OF CONSOLIDATED INTERIM STORAGE FACILITY (CISF)

- 1 Treatment & Storage
- 2 Hazardous Waste Landfill
- Byproduct Disposal Facility
- 4 Low Level Storage Pad 6 Compact Waste Facility

Federal Waste Facility

Project Scope: Store 40,000 metric tons heavy metal (MTHM) for 40 years or longer. There will be 8 separate phases of up to 5,000 MTHM in each phase. NEW RAIL SIDING PHASE 8 PHASE 7 PHASE 6 PHASE 5 EXISTING RAIL PHASE 4 CASK PHASE 3 HANDLING CONCEPTUAL PHASE 2 BUILDING DRAWING PHASE 1 SECURITY & **EMPLOYEE** -**ADMINISTRATION** PARKING & BUILDING ACCESS ROAD SIDING STATE LINE ROAD

Proposed Pad Layout for CISF

PHASE 4 PHASE 8 PHASE 3 PHASE 7 PHASE 2 PHASE 6 PHASE 5 Conceptual Drawing

Estimated Timeline

- February 2015: filed the notice of intent
- April 2016: filed license application
- Late 2016: responding to NRC requests
- Late 2019: NRC issues license application
 - Assumes a three year review period
- Late 2019: Construction begins
- January 2021: Operations begin

Questions?