

CJ-3-17263

Radiation Safety. Amplified.

Radiation measurement situation for decontaminated (removed) soil and so on around Fukushima Nuclear Power Station

Mar. 7st 2017

Atsuo SUZUKI Ph.D

Mirion Technologies (Canberra) KK Custom Solution Manager

Presentation Summary

Introduction
Regulation / Guideline / Manual
Removed soil measurement
Key Technology
Summary

Introduction

- By decontamination of land, there are a lot of removed soil, vegetation and so on in Fukushima Prefecture.
- As a result, these removed soil etc. are put into flexible container bags, commonly called SuperSack (1.1m D x 1m H) at Temporary Storage Area.(Estimated 22 M m³)
- These SSs must be measured efficiently.

Regulation / Guideline / Manual

- For Radiation monitoring (MEXT)
 - Regulatory Guide for Gamma ray spectrometry and in-situ measurement
- For removed soil (MOE)
- For Food etc. (MHLW)
- Calibration method : <u>All Regulatory Guides require the use of standard sources.</u>

Removed Soil Measurement (1) Survey meter

Survey meter method

- Using energy compensated type NaI
- The result is evaluated by correction factor
- Strength
 - Easy to use
- Weakness
 - Risk of worker's dose exposure
 - Very high cost
- Uncertainty
 - Plus or Minus Bias
 - ▶ Greater than +/- 30%

Removed Soil Measurement (2) In-situ measurement

In-situ Measurement

- In-situ collimated Ge system
- In-situ collimated NaI system

Strength

- Very accurate
- No operator next to SSs for automated system
- High throughput in case of several detectors and the ability to count multiple sacks at the same time
- Cost efficient

Weakness

- High initial cost
- Calibration is difficult with standard source
- Uncertainty
 - No Bias
 - +/- about 10% (single SS)
- 7 Iess than +/- 20% (multiple SSs)

Removed Soil Measurement (3) Soil sorting system

Soil sorting system

Some detectors on and under belt conveyer or measuring square shaped soil block

Strength

- Accurate
- High throughput

Weakness

- ► High initial cost
- ► Needs large area

Uncertainty

- No Bias
- Objective : +/- about 10% (Evaluation in the near future)

Removed Soil Measurement (4) Sampling

Sampling

- Using Ge or NaI detector at Lab.
- Strength
 - Recognized method
- Weakness
 - Not representative in case of heterogeneous SS
 - Very low throughput / high cost
 - Results after several days
 - Risk of worker's dose exposure
- Uncertainty
 - Less than +/- 10% for each sample
 - Greater than +/- 30% for SS

Example of Sampling VS in-situ measurement

Distribution of Sampling vs in-situ measurement

1SD dispersion : Ave. 7% (2.9 – 18.4%) (in-situ from 4 direction) : Ave. 20% (3.9 – 38.5%) (Sampling : 20 samples)

Key technology for measuring removed soil and so on

Difficult to applicate calibration with standard source

- Characteristics of object
 - Large size object
 - Complicated shape (height / width)
 - Many different matrixes and densities
 - Heterogeneous / Inhomogeneous
 - etc

Key technology for calibration

- Simulation method especially
- MCNP
- ISOCS (In-Situ Object Calibration Software)
- Other calibration software

Solutions developed for food and other potentially contaminated items

- Monitoring system for :
 - ► Rice bag
 - Persimmon
 - Whole body counter for infants and adults
 - Bottom soil of Pond

Summary

Developed various measurement technologies

- ▶ NEW crystal, NEW analysis method and so on
- Controlling uncertainty factors
- Simulation method is key technology

For obeying regulation / guideline / manual

User / Maker / Regulatory Agency / Academic circle

→ Discussion about application of NEW technology

Radiation Safety. Amplified.

Thank You for your attention!

Future From Fukushima.