

End-User Perspective

U.S. DOE-EM Portsmouth Gaseous Diffusion Plant Deactivation and Decommissioning

WM 2017 - 062 PANEL-NUCLEARIZED ROBOTICS PERSPECTIVES ON USE AND NEED

Marty Reibold, Fluor-BWXT Portsmouth, LLC Director of Strategic Initiatives

Portsmouth Gaseous Diffusion Plant

PORTS GDP

- Built in 1952 to produce enriched uranium for national defense and later to fuel commercial nuclear power plants
- 3,777-acre site with 415 structures
- DOE's largest facility under roof, with three large process buildings that house the gaseous diffusion process equipment and span the size of 158 football fields

Portsmouth Gaseous Diffusion Plant

Deactivation Goal – 'Cold & Dark'

- Downgrading facility from a Cat 2 Nuclear Facility
- Downgrading security
- Utility isolation and relocation
- In the past three years, more than 7,000 process components have been removed.

Primary Hazards

 Uranium, Hydrogen Fluoride, Technitium-99, Asbestos

D&D Challenges

- Characterization and removal of equipment
- Complex, labor-intensive processes

DOE-EM Science of Safety Demonstrations

- Solicited and identified candidate technologies
 (12) with a wide range applications and maturity
- Tailored demonstrations (22) to potential site needs
- Evaluated each of the technologies against range of nominal D&D tasks
- Assessed strengths, weaknesses and applicability and identified TRL levels
- Identified several technologies with strong potential for future applications at PORTS and other DOE-EM sites

Key Observations

Contamination Control

 Many available commercial and prototype robotics are not "nuclearized" and are either not robust enough or present challenges to decontaminate

Worker Safety

 Robotics can be effective at tele-operation by removing the worker from the work face but maintaining remote control

Operator Training

Workers adapted quickly to the new technology and were relatively proficient within a short time

Work Force Engagement

Hands-on use by workers was by far the best way of identifying potential applications

Emergency Response

 Robotics have an immediate application in collecting data (monitors, detectors and cameras) to assess hazardous or off-normal events

Additional Perspectives

- Demonstrations raised awareness of operating staff and management team
 - Increased potential for acceptance of implementation by work force and management
 - Identified institutional barriers and paradigms (e.g. existing work control procedures and security restrictions)
- Experience gained helped expedite PORTS implementation of robotic technologies
 - Virtual reality work planning
 - Emergency response platform
 - Tele-operated systems for equipment dismantlement and size reduction
 - Pipe inspection for detection of deposits
- Applicability is Everything
 - The most critical success factor is the identification of applicable tasks otherwise the technologies are "hammers in search of a nail"

At PORTS, The Future Is Now

