

Management of Nuclear Fuel in the UK: Past, Present and Future

Tim Tinsley

WM2017

Overview

- UK power programme
- UK strategy for spent fuel management
- Future spent fuel storage requirements
- Current issues in spent fuel management
- R&D requirements

UK Power Programme

Magnox Reactors

- ❖ 26 reactors build between 1956 and 1971
- total nominal output 4.4 GWe
- design life 20 years
- most operated > 40 years, max 47 years

- natural Uranium fuel
- ❖ ~50,000 te fuel reprocessed
- < 2,00 te fuel to be reprocessed</p>
- Reactors closed 1989 2015

Current UK Nuclear Fleet

AGR

- ▶ 6 stations, 880 1230 MWe
- ➤ total output 8.2 Gwe
- > started operation 1976-1989
- > scheduled closure 2023-2030

PWR

- ➤ 1 station, Sizewell B
- > 1198 MWe
- > started operation 1995
- > scheduled closure 2035
- expect 20 years extension

New Build (1)

- > EDF & CGN
 - ➤ Hinkley Point C,
 - ➤ 3.2 GWe capacity (2 EPR)
 - ➤ approved September 2016
 - ➤ earliest operation 2026
 - ➤ Sizewell C,
 - ➤ 3.2 GWe capacity (2 EPR)
 - ➤ Stage 2 consultation Nov 2016-Feb 2017
 - ➤ Bradwell B
 - ➤ Pre-planning stage

New Build (2)

➤ Horizon

- ➤ Wylfa, 2.7 GWe (2 ABWR)
 - ➤ Stage 2 consultation complete
 - ➤ Site investigation underway
 - ➤ Earliest operation 2026

➤ Pre-planning stage

➤ NuGen

- Moorside, 3.4 GWe (3 AP1000)
- stage 2 consultation complete
- site investigation underway
- Final Investment Decision 2018

National strategy

- Strategy has been reprocessing of Magnox and AGR fuel
 - Low corrosion resistance of Magnox fuel
 - Initial issues with corrosion of AGR fuel
 - Energy security
 - Preparation for transition to fast reactor fuel cycle
 - International business
- Disposition (approximate quantities)
 - Magnox ~50,000 te reprocessed
 - AGR ~6,000 te reprocessed <6,000 te to be stored
 SZB <2,000 te to be stored
- Strategic change due to
 - Reduced international business
 - No immediate prospect of fast reactor deployment
 - Mismatch between capacity and need
 - Good storage performance over > 20 years
 - Refurbishment costs

Spent Fuel Management Policy

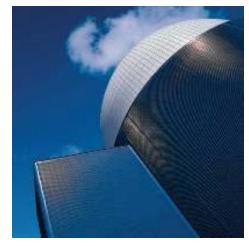
"Spent fuel management is a matter for the commercial judgement of its owners, subject to meeting the necessary regulatory requirements."

Spent Fuel Management for Gas Cooled Reactors

Current strategy for Magnox fuel:

- Interim stored and reprocessed
 - Reprocessing contracts expected to be complete by end 2020

Current strategy for AGR fuel:


- Interim stored and reprocessed
 - Reprocessing contracts expected to be complete by end 2018
- Long term stored pending geological disposal
 - ➤ Centralised ("Away from Reactor") storage
 - > Transition from interim to long term storage
 - Use of existing storage infrastructure

Spent Fuel Management for Sizewell B

- Option of reprocessing contract not exercised
- Strategy is long term stored pending geological disposal
- Reactor pool reaching capacity in 2016
- Dry storage facility commissioned 2016
 - Vertical concrete canister system

Images courtesy of EdF

Challenges for SF Management

- AGR fuel underpinning long term wet storage
- LWR fuel underpinning long term performance of canisters
- Re-use of separated Pu as MOX or fast reactor fuel (or disposal)
- Consequential challenges
 - Optimising back end: storage-transport-disposal
 - Incentivising centralised storage
 - Managing knowledge and maintaining skills and capability across long period of minimal SF activity

Vitrified Waste

- Historically UK has reprocessed its spent fuel from power reactors
 - 50,000 tHM of Magnox fuel
 - 10,000 tHM of oxide fuel (AGR, SGHWR & overseas LWR)
- Vitrified HLW is stored in air-cooled vault stores pending geological disposal
- Vitrified HLW is a core part of the GDF baseline inventory

Current R&D

- Fuel evolution over decades-centuries
- Monitoring of fuel condition and local environment
- Contingencies and severe accidents
- Ageing management of SF pools
- Drying behaviour of defective spent fuel
- Degradation mechanisms and ageing management plans for cask storage
- Post storage transportation

Summary

- UK is building a new generation of LWRs
- Strategy has moved to open 'cycle', with option for future return to closed cycle if needed
- Disposal facility programme under way
- Existing storage technology and infrastructure to meet SF management need for current reactors
- 10 year decision making period for new capacity
- Focus on knowledge, skills and capability maintenance

Sound position for long term SF management