

Waste Management/Disposition at East Tennessee Technology Park

John Wrapp, Waste Disposition Manager URS | CH2M Oak Ridge, LLC

Safely Delivering DOE's Vision for the East Tennessee Technology Park

About ETTP

- 40 years of uranium enrichment
- Radioactive and chemical contaminants in buildings, soil, sediment, and groundwater
- Classified items
- No Path To Disposal (NPTD) inventory
- 21+ million cubic feet of waste

The Approach

- Sound characterization
- Disposition path based on characterization results
- Specified packaging
- Waste acceptance criteria evaluated for selected repository
- Waste shipped immediately upon generation
- No double handling or storage

Recycle/Reuse

Dispose at ORR Landfill

Dispose at EMWMF

Dispose at NNSS

Treat/Dispose Commercially

Differentiators

- Onsite waste disposal with dedicated haul road
- "Blue Pipe" waste segregation
- Truck loading optimization
- Reusable waste containers
- "Pack As You Go"

Onsite Disposal

- EnvironmentalManagement WasteManagement Facility
 - Receives CERCLAlisted waste (i.e., Low-level, RCRA, TSCA, Mixed)
 - Approximately 85
 percent of all ETTP
 cleanup waste
 disposed at EMWMF
 - Capacity adequate for remainder of ETTP cleanup

Onsite Disposal (cont.)

- Oak Ridge Reservation Landfill
 - Three additional landfills accommodating classified, sanitary and construction debris waste
 - Classified cell recently expanded to accommodate waste from former barrier production facility
 - Established new waste route between ETTP and ORRLF to
 - Accommodate heavier volumes of sanitary waste
 - Avoid public highways and eliminate traffic through Oak Ridge National Laboratory

Total Waste

Volume 693,648 yd³

Accomplishments*

Total Waste Loads 61,640

Haul Road Usage 48,435 Round Trips

LOADS

SAFE Miles Driven 4,220,923

VOLUME (yd3)

455,406

47,933

151,337

2,009

29,986

AUG 2011-DEC 2016	
EMWMF (waste)	

EMWMF (waste)	48,473
ORR Landfill	4,703

Other - Onsite	6,699	
Energy Sol - Utah	129	

NNSS	898

Other - Offsite	738	6,988
-----------------	-----	-------

	61,640	693,648
EMWMF (clean fill)	12,004	156,845

*UCOR Contract Cumulative

7

Initial NPTD Waste Inventory

	Quantity			
Waste Category	Volume (m³)	# Containers	Reason for "No Path" Designation	
Classified F027 Mixed LLW Debris	5.8	11	F027 Listing, Classified	
Classified PCB LLW Debris	9.4	4	PCBs, Classified	
Reactive Mixed LLW Returns	0.8	4	Reactivity Characteristic	
Classified Mixed LLW Liquids/Debris/Soils	18.3	27	Classified MLLW	
Mercury Mixed LLW Debris Returns	15.2	34	Mercury, Organics	
Dioxin/Furan Mixed LLW Liquids and Debris	15.8	61	Underlying Hazardous Constituents (UHCs)	

NPTD Disposition Approach

- Revisit historical waste characterization information; thoroughly understand the waste
- Review the regulatory framework what's allowed and what's not allowed
- Revisit current available treatment technologies and disposal options
- Fill data gaps
- Reclassify and re-characterize

NPTD Status

Waste Category	Reason for "No Path" Designation	Path Identified	Status
Classified F027 Mixed LLW Debris	F027 Listing, Classified	NNSS	$\overline{\checkmark}$
Classified PCB LLW Debris	PCBs, Classified	NNSS	$\overline{\checkmark}$
Reactive Mixed LLW Returns	Reactivity Characteristic	M&EC, NNSS	$\overline{\checkmark}$
Classified Mixed LLW Liquids/Debris/Soils	Classified MLLW	M&EC, NNSS	$\overline{\checkmark}$
Mercury Mixed LLW Debris Returns	Mercury, Organics	NNSS	\square
Dioxin/Furan Mixed LLW Liquids and Debris	UHCs	29 to M&EC, 31 awaiting results of treatability study	In process
Sodium and Lithium Hydride shields (material for recovery)	Reactivity Characteristic	22 to M&EC, 38 TBD	In process

Remaining Challenges

Dioxin and Furan Waste

-Problem:

- Includes both solidand liquid phase dioxin/furan F and U hazardous waste codes
- Technology exists to treat the primary waste, however the secondary liquids have no treatment/disposal path

-Solution:

 Re-characterize and remove Dioxin and Furan codes, which opened path for 29 of 60 to Perma-Fix's Diversified Scientific Services, Inc. (DSSI) for incineration

-Status:

Treatability study under way for remaining 31 containers

Remaining Challenges (cont.)

- Sodium and Lithium Shields
 - Problem:
 - Large, odd-shaped items containing bulk sodium metal or lithium hydride
 - Extremely reactive resulting in two Type B investigations occurring within the DOE complex as a result of uncontrolled reactions


-Solution:

 Working with several vendors to determine safe, cost-effective disposition path

-Status:

 Perma-Fix treating 22 of small shields that fit into their treatment unit; searching paths for remaining shields

Remaining Challenges (cont.)

- Mercury-bearing Waste
 - Mainly soil and/or debris contaminated with mercury at Y-12 National Security Complex
 - Sensitivity with stakeholders for Land Disposal Restriction (LDR) compliant mercury waste to be disposed of onsite
- 80 200.59
 HG
 Mercury

- Separation of elemental mercury from soil/debris
 - Amalgamation for radioactive elemental mercury and RMERC* for nonradioactive elemental mercury
 - RMERC or macro for debris under alternative treatment standard for debris
 - RMERC or stabilization under alternative treatment standard for soil
- Controlling the release of mercury during deactivation and demolition
- Industrial Hygiene challenges
 - Vapors

^{*}RMERC - Retorting or roasting in a thermal processing unit capable of volatilizing mercury and subsequently condensing the volatilized mercury for recovery

Remaining Challenges (cont.)

- High Activity Waste generated at Oak Ridge National Laboratory
 - No hot-cell and/or facility capabilities for handling/characterization
 - Difficult to make DOT-compliant for shipment to potential treatment, storage, disposal, and recycling facilities (TSDRF)
 - Shutdown of Materials and Energy Corporation (M&EC) South Bay Facility eliminates the path previously used for this type of waste

Complex-wide Challenges

- Sodium shields and other sodium-bearing waste can be found at other DOE sites
- Eventual loss of M&EC South Bay will impact complex with processing high activity waste
- Due to lack of waste destined for several specific treatment technologies, TSDRF's are considering eliminating for business reasons
 - Could result in no treatment technology available and orphan waste being generated