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ABSTRACT 
 

The flow of a viscous fluid is considered to calculate the permeability of a porous 
medium with wavy pores. Under the assumption of periodicity a unit cell which 
contains solid phase of wavy shape is chosen on the microscale and the flow field is 
calculated by solving a certain boundary-value problem (BVP), Stokes problem. The 
BVP is obtained by applying the theory of homogenization to slow viscous flow 
through porous structure on the microscale. It is shown that the permeability is 
dominantly determined by the flow through straightly connected portion of the pore 
space. 

 
INTRODUCTION 
 
When there is an externally imposed pressure gradient over a porous medium on 
the macroscale, the fluid in the pores is driven to flow through the medium as a 
result of balance between the pressure gradient and the viscous drag exerted by 
the solid boundary on the fluid. It is important to estimate the permeability of the 
medium. For effective management of the underground repository it is essentially 
important to know the flow characteristics which may lead to the determination (or 
reliable estimation) of the medium permeability. Knowledge of flow characteristics 
will also enable one to readily investigate the transport of contaminant released in 
the medium.  
 
In this study, a medium which is composed of wavy solid and fluid phases is 
chosen and the flow field in the pore space is calculated from which the 
permeability is determined. The calculations are carried out by using FLUENT 
packed in ANSYS. The theoretical framework is based on the homogenization 
theory which systematically combines the processes on the microscale and deduces 
the governing equations and the effective coefficients on the macroscale [1]. Under 
two basic assumptions, (i) the periodicity of the medium structure on the 
microscale with periodic length l and (ii) the periodicity of all variables and material 
properties over the same length. It is noted that the periodicity assumption is not 
very restrictive because the distributions and arrangements over the periodic length 
are quite arbitrary. 
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When there is an externally imposed pressure gradient in the x-direction, it is 
shown that the permeability is dominantly influenced by the flow field in the 
straight wavy pores that connect through the medium. 

 

It is emphasized that the approach in the present study does not assume any ad 
hoc or phenomenological assumptions, except the periodicity assumption which is 
in a sense not restrictive, and starts from the basic governing laws on the 
microscale and deduces the effective relations on the macroscale systematically by 
using the multiple-scale perturbation procedure. The permeability is calculated, not 
estimated, from the solution to the Stokes problem, a boundary-value problem 
defined in in the pore space of a microcell. 
 

THE GOVERNING RELATIONS ON THE MICROSCALE 
The porous medium is composed of the solid phase (Ωs) and the fluid phase (Ωf) 
which is saturated by a liquid. The microscale cell domain is represented by Ω =Ωs 
+ Ωf. Each phase is assumed to be connected throughout the porous medium. Fluid 
flow is induced by a pressure gradient imposed over the medium on the macroscale. 
Hence, on the microscale, the leading order pressure is linearly varying with 
microscale correction which is determined by solving a microcell boundary-value 
problem. 

The basic governing relations and the boundary conditions that must be satisfied in 
the fluid domain Ωf are desribed without showing the explicit forms..  

The governing equations for the fluid on the microscale in the fluid phase (Ωf) are 
the conservation laws of mass and momentum[1].  

On the boundary Γ  between the solid and fluid, the liquid velocity vanishes 

The governing equations and the boundary conditions are normalized by using the 
representative scales. It is assumed the inertial effects are small so that the 
Reynolds number is small.  

 
MULTIPLE SCALE ANALYSIS 
The distinguishing features of the multiple scale perturbation analysis are briefly 
summarized. In view of the scale disparity of the porous medium, two distinct 
length scales are introduced: the microscale - the fast scale which is equivalent to 
the representative elementary volume in the traditional treatment of the process 
and the macroscale - the scale over which the processes of interest take place from 
the viewpoint of reservoir engineering and management. 

The variables are expanded as perturbation series in the following small parameter  

         (Eq. 1) 
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in which l is the microscale length and l ' the macroscale length. Expanding the 
governing equations and boundary conditions, the microscale boundary-value 
problems are investigated separately according to the respective order of є and, 
through volume-averaging over the micro-cell, the effective macroscale governign 
equations are derived.  

In the process of the multiple scale analysis, a canonical micro-cell boundary-value 
problem is defined whose solution is used in the calculation of the effective 
macroscale coefficients by averaging over the micro-cell volume. 
 
THE BOUNDARY-VALUE PROBLEM IN THE UNIT CELL  
For a porous medium with periodic arrays of unit cells a boundary-value problem is 
defined during the process of applying the multiple-scale expansions to the basic 
governing relations on the microscale. Specifically the fluid pressure at the leading 
order is shown to be independent of the microscale. The fluid velocity in the pore 
and the correction for pressure are then represented in terms of the macroscale 
pressure gradient as[2] 

    (Eq. 2a, b) 

in which dimensionless variables are used and the primed gradient operator is with 
respect to the macroscale. 

For fluid flow the following Stokes problem in dimensionless variables is defined: 

      (Eq. 3a-e) 

In the above, K=Kij and S=Sj are the fluid velocity in the i-th direction and the fluid 
pressure variation in the micro-cell due to externally imposed pressure gradient in 
the j-th direction. The unprimed gradient operator is with respect to the microscale 
coordinates. The pair of angle brackets in (Eq. 3d) is the volume average over Ω as 
defined below in (Eq. 4). 
 

Equations (Eq. 3a) and (Eq. 3b) are the momentum conservation of the fluid driven 
by a unit force with no convective inertia and the continuity equation, respectively. 
The no-slip condition on the fluid-solid interface is given in (Eq. 3c). Equation (Eq. 
3d) is imposed to ensure the uniqueness of the pressure. Lastly (Eq. 3e) is imposed 
to satisfy the periodicity condition. 
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The macroscale permeability tensor of rank two is then given by the micro-cell 
volume average of K as 

        (Eq. 4) 

and the Darcy’s law is given as  

        (Eq. 5) 

where the left-hand side is the seepage velocity and the primed gradient is the 
derivative of the fluid pressure over the macroscale. This serves as the momentum 
equation on the macroscale. 

 
THE DISCRETIZATION  
The geometry of the unit cell on the microscale is as shown in Fig. 1 in which wavy 
solid and fluid phases are shown.  

Except for simple and elementary geometries the Stokes problem does not 
allow analytic solution and has to be solved numerically. For this purpose the 
commercial software FLUENT for flow analysis (packed together with other purpose 
ones in ANSYS) has been used.  
 In solving the Stokes problem, three progressively finer finite element 
meshes were used. They are labelled as Mesh 0.1, 0.05, and 0.03 respectively. The 
numbers in the mesh label denotes the representative element size in the 
discretization along both the horizontal and vertical sides of the unit cell. As the 
number decreases, the number of finite elements increases sharply in proportion to 
the inverse of the cubic of the label number. 
 The three meshes are shown in Fig.2. 
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(a) 

 (b) 
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Fig.1. Geometry of the porous medium: (a) Array of microcells and (b) One-eighth 
of a microcell. 
 
 

(a) (b) 
 

(c)  
 

Fig.2. Three meshes used in solving the Stokes problem: (a) Mesh 0.1, (b) Mesh 
0.05, and (c) Mesh 0.03. 

 
THE FLUID VELOCITY AND PRESSURE DISTRIBUTIONS  
The velocity distribution in the pores determined from the finest mesh(Mesh 
0.03 shown in Fig. 2(c)) is shown in Fig. 3 which has been adjusted 
automatically by CFX for clear and convenient display of the velocity arrows.  

 Due to the external pressure gradient in the x-direction the velocity 
vestors are aligned predominantly in the x-direction. Notice that, due to the 
periodicity condition, (Eq. 3e), the velocity arrows on the left boundary are 
repeated on the corresponding portions of the right boundary. Notice that, 
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due to symmetry in the geometry, the velocity is nearly zero in the upper 
part of the pore space which is normal to the x-direction. Hence the upper 
part of the pore is practically isolated from other part from the flow view 
point. Due to the no-slip condition for the velocity, (Eq. 3c), the fluid velocity 
vanishes on the surface of the grains.  
 

 
 

Fig. 3. Velocity distribution in the pores (Mesh 0.03) when the external pressure 
gradient is in the x-direction. 

 
The pressure distribution in the pore space is shown in Fig. 4. Notice that the 

pressure contour lines are quite vertical in the central zone especially in the upper 
wavy pore implying that the velocity has nearly vanished. It is consistent with the 
observation of the velocity distribution shown in Fig. 3 and discussed above. 

On the other hand, in the channel-like wavy pore in the lower region along 
x-direction the pressure changes along the channel direction with relatively large 
change where, in fact, the velocity takes the largest values as seen in Fig. 3.  
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Fig. 4. Pressure distribution in the pores when the external pressure gradient is in 
the x-direction. 

 
 
 
RESULTS AND DISCUSSION  
The permeability is calculated from the velocity field by taking the volume average 
over the micro-cells using, cf. (Eq. 4).  

The values calculated from the four different meshes are summarized in 
Table 1 below.  
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Table 1 Permeability and porosity values from different meshes 
 
 
 
 
 
 
 
 
 
 
 The permeability <Kxx>, the permeability in the x-direction due to the 
macroscale pressure gradient in the x-direction, converges quite well. The error is 
less than 2% and the result is quite accurate enough. The permeability is 
dominantly contributed by the flow field along the central wavy pore in Fig. 3.  
  The porosity value converges quickly as the mesh is refined, i.e., as the grain 
boundaries become smooth with the refinement of discretization.  
 The microcell geometry used in the present study is composed of wavy solid 
and fluid regions. By modifying the waviness it can be used to model a medium 
composed of round grains. 
 
CONCLUSIONS 
From the calculations of the permeability in a porous medium with wavy pores and 
solid phase in a unit cell on the microscale the following conclusions are drawn. 

1. The permeability of a medium with wavy pores is dominantly influenced by 
the straight connecting portions of the pore space. 

2. Calculation of permeability for a porous medium with general geometry, but 
periodic on the microscale, can be carried out efficiently by using finite 
elements. 

4. It is worthwhile extending the computational procedure in this study to medium 
structures with grains of varying waviness and other distribution patterns. 
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Mesh type Permeability Porosity  

0.1 2.94837E-03 0.25218  

0.05 2.84209E-03 0.254341  

0.03 2.78668E-03 0.254698  


	(Eq. 3a-e)

