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ABSTRACT 
Long-term monitoring of contaminant transport in groundwater is expected to 
account for a large fraction of future life-cycle cleanup costs at the DOE sites. The 
Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative 
(ABRS AFRI) is developing an innovative approach for cost-effective in situ long-term 
monitoring. The approach is based on strategically adding the measurements of 
controlling variables (such as pH, redox potential, electrical conductivity, and 
groundwater level), which control the plume mobility and its spatial and temporal 
distribution. In situ measurements of these variables – supplemented with a reduced 
number of standard periodic groundwater samples – are expected to lead to more 
cost-effective monitoring, and can also serve as an early warning system for detecting 
unexpected plume migration. 
The objective of this study is to support the development of such a long-term 
monitoring approach through the application of advanced computational methods, 
including (1) statistical data mining and analysis, and (2) three-dimensional flow and 
reactive chemical transport modeling. We have performed the statistical data analysis 
of historical and current monitoring data at the Savannah River Site (SRS) F-Area to 
quantify the correlations between the controlling variables and radioactive 
contaminant concentrations. In parallel, we have used 3D modeling of flow and 
contaminant transport to provide the prediction of the contaminant plume evolution. 
The results of both data analysis and modeling confirmed that the correlations 
between controlling variables and contaminant concentrations are significant. 
Modeling results also suggest that the correlation parameters will change in the 
future, which is important to assess the long-term efficacy of the proposed monitoring 
approach.    
 
INTRODUCTION 
Nuclear weapon production during the Cold War has resulted in groundwater 
contamination at many locations in the United States. Low-level radioactive waste 
solutions were often disposed into unlined seepage basins with minimal or no 
engineered barriers. Remediation of these sites poses one of the most technically 
complex cleanup challenges in the world [1]. Although many remediation efforts have 
been successful or are expected to finish in the next several decades, continued 
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monitoring of groundwater will be required for decades at most of these sites – 
particularly the sites that have been selected for monitored natural attenuation – to 
ensure long-term safety. The current practice of monitoring – obtaining and analyzing 
the contaminant concentrations in groundwater samples at numerous wells – is quite 
costly especially over long time frames. The long-term monitoring is, in fact, expected 
to account for a large fraction of the life-cycle cleanup costs at the DOE sites.  
  
To tackle this challenge, the Attenuation-Based Remedies in the Subsurface Applied 
Field Research Initiative (ABRS AFRI) is developing an innovative approach for 
cost-effective in situ long-term monitoring. This approach is based on strategically 
adding in situ measurements of controlling variables (such as pH, redox potential, 
groundwater level, and electrical conductivity) to the standard monitoring and 
groundwater sampling approach. Such variables control the plume mobility and its 
spatial and temporal distributions, and they can be measured in situ, using distributed 
automated sensors over time at a significantly lower cost compared to the standard 
groundwater sampling and analysis. Such an in situ sensor network, supplemented 
with a reduced number of standard periodic groundwater measurements, will lead to 
the development of more robust and cost-effective monitoring. In addition, it can 
serve as an early warning system for detecting the plume migration. 
 
Critical to assessing such an in situ monitoring strategy over a long time frame is the 
predictive understanding of long-term plume mobility and its correlations with the 
controlling variables. Modeling of flow and contaminant transport enables the 
prediction of contaminant plume evolution under various conditions for many years. 
Simulation results can, for example, be used to explore the correlations between 
contaminant concentrations and controlling variables, providing the practical basis for 
using these such correlations for monitoring. In addition, modeling allows us to 
evaluate the long-term viability of the developed approach by predicting, for example, 
the effect of hydrological shift due to climate change, or the effect of operational 
decisions on monitoring.  
 
In parallel to such mechanistic modeling, the use of data analytics is key for 
optimization of continuous-time monitoring data from distributed sensors; also 
historical datasets are invaluable for validation of modeling results and development 
of monitoring strategies. Recent rapid advancement in statistical methods and 
software allows us to discover hidden patterns and trends within the datasets. 
Particularly, a multivariate regression analysis can identify the temporal and spatial 
variability of correlations between the controlling variables and contaminant 
concentrations. In addition, cluster analysis can be used to group monitoring wells 
into clusters that behave similarly such that we can reduce the number of monitoring 
wells.   
 
This integrated approach – combining mechanistic modeling from first principles, and 
data-driven statistical approaches – will enable us (1) to confirm consistency between 
data and models, (2) to improve our system understanding and (3) to iteratively build 
our confidence on the developed monitoring approach. This data-model integration, 
along with the developed monitoring approach, will be transformational for the 
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environmental monitoring programs at the DOE and other sites. 
 
In this paper, we present our preliminary results of modeling and statistical analysis 
for the conditions of the Savannah River Site (SRS) F-Area, where groundwater was 
contaminated by acidic low-level waste solutions that were disposed of into unlined 
basins beginning in the 1950’s. The plume contains various contaminants including 
uranium isotopes, Sr-90, I-129, Tc-99, and tritium, as well as nitrate. The SRS F-Area 
environmental compliance team has developed a robust and diverse historical 
database of characterization and monitoring data that include measurements from a 
large number of wells (including contamination concentrations, hydrological variables 
and other geological data) over time. These historical data enable us to explore the 
correlations between the controlling variables and contaminant concentrations, and 
also to test the developed approach in a historical manner. 
 
A three-dimensional (3D) flow and reactive transport model has been developed at 
the SRS F-Area under the Advanced Simulation Capability for Environmental 
Management (ASCEM) project funded by DOE Office of Environmental Management 
(http://esd1.lbl.gov/research/projects/ascem/). ASCEM is an open source, modular 
computing framework that incorporates new advances and tools for predicting 
contaminant fate and transport in natural and engineered systems. ASCEM includes a 
state-of-art numerical code (Amanzi) on high-performance computing (HPC) 
platforms for simulating complex flow and reactive transport, and numerous toolsets 
such as data management, visualization, uncertainty quantification (UQ) and 
parameter estimation (PE). At the F-Area, the model has been used to evaluate 
different engineering treatment options [2]. The combination of these two 
components – data analysis and modeling– enables us to transform the F-Area to be 
a real/virtual test bed for DOE-EM applications. 
 
This paper presents the preliminary results in our development. We first describe the 
site, and our data analysis and modeling approaches in detail. We then show the data 
analysis results and the simulation results from our 3D reactive transport model. 
Finally, we quantify the correlations between contaminant concentrations and 
controlling variables, as well as compare the correlations from two approaches for 
evaluating the consistency between the model and data.     
 
SITE DESCRIPTION 
The Savannah River Site (SRS) is located in south-central South Carolina, near Aiken, 
approximately 100 miles from the Atlantic Coast. It covers about 800 km2 (300 mi2) 
and contains facilities constructed in the early 1950s to produce special radioactive 
isotopes (e.g., plutonium and tritium) for the U.S. nuclear weapons stockpile. The SRS 
F-Area seepage basins were constructed as unlined, earthen surface impoundments 
that received ~7.1 billion liter of acidic, low-level waste solutions from the processing 
of irradiated uranium in the F-Area Separations facility from 1955 through 1988 [3]. 
Currently, an acidic contaminant plume extends from the basins ~600 m 
downgradient to the Four Mile Branch creek, including various radionuclides, such as 
uranium isotopes, Sr-90, I-129, Tc-99, tritium, and other contaminants, such as 
nitrate.  
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Various remediation activities have been conducted at the site, including capping of 
the basins (1991) and pump-and-treat (1997–2004). A hybrid funnel-and-gate 
system has been in operation since 2004, which includes low-permeability engineered 
flow barriers, and injection of alkaline solutions. The base injections are considered to 
be effective in neutralizing the acidic groundwater and in greatly increasing uranium 
retardation, since uranium mobility is significantly influenced by pH (because higher 
pH values increase uranium sorption). At the same time, the barriers slow down 
plume migration and increase decay and mixing before the plume reaches the Four 
Mile Branch creek, a down-gradient stream that ultimately captures the plume. 
Monitored Natural Attenuation (MNA) is a desired closure strategy for the site, 
assuming that infiltration of rainwater will eventually increase the pH of the plume, 
causing much stronger retardation and dilution of the uranium plume.  
 
The hydrogeological conditions of the F-Area have been described in several previous 
studies [2, 4, 5]. SRS is located within the Atlantic Coastal Plain physiographic 
province, which is characterized by sub-horizontal sedimentary layers. There are 
three hydrostratigraphic units within the Upper Three Runs Aquifer: an upper aquifer 
zone (UUTRA), a Tan Clay Confining Zone (TCCZ), and a lower aquifer zone (LUTRA). 
Beneath the LUTRA is a clay layer called the Gordon confining unit. UUTRA and LUTRA 
are permeable sandy layers, and TTCZ is a low-permeable mixed sand-and-clay layer. 
The water table data suggest that TTCZ is a leaky confining unit so that UUTRA and 
LUTRA are hydrologically connected, while the Gordon confining unit is a 
semi-impermeable confining unit.  
 
The geochemical conditions have been extensively characterized through many field 
and laboratory experiments, particularly for uranium geochemistry. In this paper, we 
focus on uranium chemistry, since mechanistic models have been developed to 
describe its sorption and pH-dependent behaviors. As described in Bea et al. [4], the 
natural attenuation of the acidic-U(VI) plume in the F-Area is likely to be affected 
mainly by the following processes: (1) adsorption/desorption of U(VI) onto/from the 
surface of different minerals (mainly kaolinite and goethite at this site) under different 
mechanisms (i.e., electrostatic surface complexation and/or ion exchange) [6]; (2) 
pH effects related to H+ sorption and/or Al mineral dissolution and precipitation; (3) 
mixing of the plume groundwater with clean (and higher pH) background 
groundwater. 
 
METHODOLOGY 
3D Flow Model Development 
A 3D reactive transport model has been continuously developed and improved over 
the last five years [2,7]. The 3D hydrological model was developed based on the 
previous flow model developed for a larger domain encompassing the overall General 
Separations Area (GSA) [5]. The water table computed in the GSA flow model was 
used to define a model domain that follows natural hydrologic boundaries (Fig. 1a). 
The domain includes three main hydrostratigraphic units: UUTRA, TCCZ and LUTRA.  
 
Recent improvements focused on the hydrostratigraphic interfaces and engineered 
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barrier systems. The interfaces were updated based on recently acquired cone 
penetrometer testing datasets and surface seismic datasets [8], which capture the 
detail heterogeneity of the TCCZ top (or the lower boundary of UUTRA). The top of the 
TCCZ is known to be quite important for plume migration, since its depressions (or 
troughs) accumulate the contaminants (Fig. 1a). The new domain also includes 
low-permeability engineered barriers, which are part of the funnel-and-gate system 
(Fig. 1).  
 

Figure 1. (a) Plan view of the 3D flow and transport domain with the contour plot of 
TCCZ depths, and (b-c) 3D prismatic mesh generated by LaGriT is shown using an 
exaggerated vertical scaling to highlight the three stratigraphic layers. In (a), the 
colored contour represents the water table computed in the GSA flow model, the red 
lines are the barrier locations, and the green circles are the base injection wells. In 
(b), the green region is the upper aquifer, the middle brown layer is the Tan Clay 
confining zone, and the blue region is the lower aquifer.  
 
The unstructured 3D prismatic mesh was improved significantly using the Los Alamos 
Grid Toolbox (LaGriT; http://lagrit.lanl.gov; Fig. 1b-d). The mesh is refined around 
the barriers and basins, where we expect a sharp gradient in pressure and 
concentrations. Mesh edge lengths were smallest (highest resolution) at the barrier 

http://lagrit.lanl.gov/
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locations (Fig. 1d) with edge lengths near .2 meters. The regions with no small 
features to capture have larger spacing with edge lengths between 20 and 50 meters 
(Fig. 1b). The final mesh used in this study has 1,849,039 cells and 982,998 vertices, 
which is significantly more refined than the previous model [2].  
 
The 3D flow and transport simulations were performed using the Richards equation 
and advective transport Process Kernels in Amanzi on the NERSC HPC platforms. The 
same aquifer properties as the two-dimensional flow model developed by [4] were 
used. A permeability of 1×10-17m2 was assumed for the engineered barriers. The 
upstream model boundary was treated as fixed pressure based on the measured 
water-table height. The upper surface was treated as a constant recharge boundary 
with a moving seepage face to allow groundwater flow to upwell and discharge to the 
Four Mile Branch creek. The other boundary conditions were treated as no-flow, 
including the vertical boundary below the stream, the bottom boundary of the model 
which is a relatively continuous low-permeability clay layer, and sides of the model 
which are parallel to flow. 
 
3D Reactive Transport Model Development 
A three-dimensional reactive transport model was assembled by combining the flow 
and transport model detailed above and the geochemical model developed in the 
Phase II Demonstration [7]. The combination of the flow and transport portion of the 
model and the geochemical model was enabled by the Alquimia interface in Amanzi. 
This interface makes it possible to use existing geochemical codes (e.g. PFLOTRAN, 
CrunchFlow) within the ASCEM HPC infrastructure through a generic coupling. 
 
In the Phase II Demonstration [7], a geochemical model was developed based on part 
on the work of Bea et al. [4] as well as on a sorption model that relied on a single-site 
equilibrium, pH-dependent surface complexation. The primary geochemical system 
consists of 13 reactive chemical components and 8 minerals. The sorption model, 
however, provides the principal control on the uranium migration rate. An ion 
exchange model includes reactions involving the major cations (Ca2+, Na+, and Al3+, 
along with H+) and provides primary pH buffering along with the mineral reactions. 
The uranium mobility is controlled largely by a single sorption reaction, with the only 
significant effect on the stability of the surface complexation being the solution pH and 
carbonate activity. The pH has an effect directly through the surface complexation 
reaction:  
 
  >SOH + UO2+

2  >SOUO+
2 + H+ (Eq. 1) 

 
where >SOUO+

2 refers to the uranium-bearing surface complex developed on the 
sediment grain surfaces.  This nonelectrostatic model is applied to the bulk sediment 
rather than to specific pure mineral phases that serve as sorbents in electrostatic 
models. The effect of carbonate concentration on the strength of the uranium surface 
complex (and thus the mobility of the uranium) enters indirectly through the various 
(calcium)-uranium-carbonate complexes that form as a function of carbonate activity 
and pH. At the F-Area, a significant mass of the H+ ion is sorbed on mineral surfaces. 
This effect is treated with a set of cation exchange reactions that represent the pH 
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buffering via sorption on mineral surfaces (in addition to pH buffering by mineral 
dissolution and precipitation reactions) by the following: 
 
  Na-X  Na+ + X-, logK=0.0 (Eq. 2) 
  Ca-X2  Ca2+ + 2X-, logK=-0.5 (Eq. 3) 
  H-X  H+ + X-, logK=-1.60  (Eq. 4) 
 
In essence, these ion exchange reactions, along with the single uranium surface 
complexation reaction, captured much of the pH and carbonate activity effects on 
uranium mobility and had the additional advantage that they involve a much smaller 
list of adjustable parameters than is included in [4] or [6]. A detailed list of reactions 
and geochemical parameters is included in the Appendix E of [7]. 
 
Statistical Data Analysis Method 
The purpose of the statistical data analysis was to assess whether there are 
correlations between the radionuclide concentrations and master variables, such as 
nitrate concentration and pH. Statistical data analysis included the evaluation of 
correlations between the concentrations of uranium isotopes, 14C, tritium, nitrate and 
pH, which were detected in groundwater samples. We assumed that the nitrate 
concentration is a proxy for electrical conductivity (EC) of groundwater, since nitrate 
dominates the other dissolved species at F-Area within the plume. 
 
RESULTS 
Statistical Analysis of Geochemical Concentrations 
Fig. 2 illustrates time series of concentrations in Well FSC 79 from 1990 to 2009. 
These data were used to calculate the general statistics of concentrations and a 
correlation matrix given in TABLE I. In TABLE I, the correlation coefficients, with a 
significance level alpha <0.05, are given in bold. For example, reasonable correlations 
exist between the concentration of U-238 and U-233/234 and NO3

-, and between 
tritium (H-3) and NO3

-, as well as a reasonable (inverse) correlation exists between 
tritium and pH. As expected, excellent correlations exist between different uranium 
isotopes 238, 235, and 233/234. 
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Figure 2. Time series of concentrations of radionuclides (all are in pCi/l), nitrate (in 
mg/l), and pH, which were used for the statistical analysis.  

TABLE I. Correlation matrix of the concentrations of radionuclides, nitrate (NO3) and 
pH at FSB79. 
Correlation matrix (Pearson)      
Variables NO3

- 

mg/L 
pH 233/234U 

pCi/L 
235U 
pCi/L 

238U 
pCi/L 

14C  
pCi/L 

3H 
pCi/L 

NO3
-  1 -0.381 0.221 0.177 0.239 -0.229 0.700 

pH -0.381 1 -0.125 -0.129 -0.158 0.105 -0.477 
233/234U 0.221 -0.125 1 0.956 0.970 0.020 0.157 
235U 0.177 -0.129 0.956 1 0.951 0.046 0.173 
238U 0.239 -0.158 0.970 0.951 1 -0.003 0.214 
14C  -0.229 0.105 0.020 0.046 -0.003 1 -0.211 
3H 0.700 -0.477 0.157 0.173 0.214 -0.211 1 
* Values in bold are different from 0 with a significance level alpha=0.05 
p-values        
Variables NO3

- pH 233/234U 235U 238U 14C  3H 
NO3

-  0 0.000 0.031 0.084 0.019 0.025 < 0.0001 
pH 0.000 0 0.223 0.210 0.124 0.307 < 0.0001 
233/234U 0.031 0.223 0 < 

0.0001 
< 
0.0001 

0.847 0.126 

235U 0.084 0.210 < 0.0001 0 < 
0.0001 

0.659 0.092 

238U 0.019 0.124 < 0.0001 < 
0.0001 

0 0.977 0.036 

14C  0.025 0.307 0.847 0.659 0.977 0 0.039 
3H < 

0.0001 
< 
0.0001 

0.126 0.092 0.036 0.039 0 

Values in bold are different from 0 with a significance level alpha=0.05  
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Fig. 3 presents scatter plots showing the regression between radionuclide 
concentrations and pH and radionuclides and nitrate concentrations. Fig. 3a shows 
that there is a complex relationship between concentrations of uranium isotopes and 
pH: as pH increases from 3.1 to ~5.5, uranium concentrations drop, and when pH 
increases to 6.5, uranium concentrations increase. Fig. 3b shows that the tritium 
concentration drops as pH increases from 3.1 to 4, and then the tritium concentration 
remains practically the same as pH increases. Fig. 3c demonstrates an excellent 
power-law regression between the tritium and nitrate concentrations, and Fig. 3d 
demonstrates satisfactory power-law regressions between uranium isotopes and 
nitrate concentrations.  

 

(a)                 (b) 

 

 (c)                (d) 
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Figure 3. Graphical scatter plots of the regression at FSB79 between (a) radionuclide 
concentrations and pH, (b) tritium concentration and pH, (c) tritium concentration and 
nitrate concentration, and (d) uranium concentrations and nitrate concentration.  

To evaluate the spatial variability of such correlations, Fig. 4 shows the observed 
correlations between uranium concentrations and controlling variables (electrical 
conductivity, pH and water table) at two wells in the upper aquifer (UUTRA): one near 
the source basin (FSB95D) and the other near the downgradient creek (FSB110D). 
The observation times are more limited than FSB 79 between 1993 and 2005. The 
points in Fig. 4 represent the observations after 1992, and considered to be at the 
trailing edge of the plume. The correlation coefficients and their p values are 
summarized in TABLE II. We observe a significant correlation between the controlling 
variables and the uranium concentration except for the water table at the 
downgradient well (FSB110D).  
 

 
 (a)    (b)    (c) 
Figure 4. Observed correlations between uranium (U) concentration (log-transformed 
mol/L) and controlling variables at FSB95D and Well FSB110D: (a) nitrate 
concentration (log-transformed mol/L), (b) pH and (c) water table. In each plot, the 
lines are based on linear fitting of each time series. 
 
TABLE II. The correlation coefficients (and their p-values) between the uranium 
concentration and master variables, shown in Fig. 4.  
 FSB95DR FSB110D 
NO3 0.93 (<10-4) 0.84 (<10-4) 
pH -0.80 (2x10-4) -0.65 (0.0015) 
Water Table 0.91 (5.94x10-4) 0.23 (0.59) 
 
Such strong correlations shown in Fig. 3 and 4 suggest the feasibility of inferring 
uranium concentrations based on the controlling variables, by describing the uranium 
concentration as a function of the master variables. Interestingly, the slope from 
linear (log – log) fitting (power-law function) is similar at two locations in the 
uranium-nitrate and uranium-pH correlations. It suggests that we may interpolate the 
functional parameters over the site based on sparse measurements. The correlations 
are, however, better for the well close to the source (FSB95D). It suggests the 
importance of quantifying the uncertainty at each location.   
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3D Flow and Reactive Transport Modeling Results 
Fig. 5 shows the simulated evolution of the low-pH and uranium plumes. This 
simulation includes capping of the seepage basin, which limited the infiltration after 
the basin operation stopped. It does not include other remediation treatments at the 
site. The plumes initially move straight down vertically until they hit the water table, 
and then migrate laterally mainly within the upper aquifer (Fig. 5a and d). The low-pH 
plume moves more quickly down gradient (Fig. 5a and b), increasing the mobility of 
uranium and creating a way for the uranium plume to follow (Fig. 5d and e). As the 
plume migrates down gradient towards the creek, the plume goes through the troughs 
in the bottom of the upper aquifer (Fig. 5b). The model predicts that a significant 
amount of uranium is trapped in the vadose zone (Fig. 5f) in 2050 even though pH is 
neutralized (Fig. 5c), which suggests the long-term effect of capping the basin. 
 
Fig. 6 shows the pH buffering caused by the dissolution of minerals present in the 
F-Area. This increase in pH reduces uranium mobility and minimizes the impact of 
discharging acidic solutions. In agreement with Bea et al., [4], kaolinite (and to a 
lesser extent goethite) dissolution during the seepage of acidic solutions provides the 
first pH buffering mechanism in the system (with 3 moles of H+ consumed for each 
mode of dissolved Al or Fe). Fig. 6b shows the extent of kaolinite depletion below the 
seepage basins. In addition to mineral dissolution, the retardation of the pH front with 
respect to conservative fronts is caused by the sorption of the cation H+ on the bulk 
mineral. Fig. 6c shows that indeed a significant mass of the H+ ion is sorbed on the 
mineral surfaces. In the absence of reactive mineral phases, this buffering mechanism 
would not exist and uranium would be more mobile and the concentrations higher. 
 

(a) 1966 

(d) 1966 
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Figure 5. The simulated evolution of (a-c) low-pH plume (pH> 4) and (d-f) uranium 
plume (concentration>1x10-6mol/L). The sky blue region is the low permeable TCCZ, 
which separates the upper and lower aquifers. Vertical exaggeration=15X. 
 

 
 (a)    (b)      (c)     

Figure 6: (a) low-pH plume represented as the pH 5 isosurface showing the extent of 
acidification below the seepage basins in 1988. (b) kaolinite-depleted zone as a result 
of dissolution driven by low pH conditions below the seepage basins in 1988, and (c) 
total sorbed concentration of H+ below the seepage basins in 1988 indicated as an 
isosurface at a concentration of 0.1 mol/m3-bulk. Vertical exaggeration=15X. 
 
Fig. 7 shows the concentrations of three main species (uranium, aluminum and 
nitrate) at the same two wells as Fig. 4 (FSB95D near the basin and FSB110D near the 
down-gradient creek). Although the model is not fully calibrated yet at this time, the 
comparison to the observations shows a reasonable agreement particularly at 
FSB95D, which is close to the source basin. The agreement is comparable to the 
previous studies, using a two-dimensional reactive transport models [4, 6].  
 

 
 (a)    (b)    (c) 
Figure 7: Comparison between the simulated concentrations (lines) and observations 
(circles) at FSB95D and FSB110D (a) uranium concentration (UO2+), (b) aluminum 
concentration (Al3+) and (c) nitrate concentration (NO3

-). 
 
Using these 3D reactive transport model results, we quantified the correlations 
between controlling variables (pH, water table, and electrical conductivity) and 
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contaminant concentrations (Fig. 8). As our preliminary results, we focused on the 
uranium concentration at the same two wells as Fig. 4 and 7. We assumed that the 
nitrate concentration is a proxy for electrical conductivity of groundwater. We selected 
the concentrations after 1992 corresponding to the observations (Fig. 4) but we also 
extended our predictions until 2100. 
 
In Fig. 8, we see the correlations similar to the observations except for the water table 
(Fig. 4). We consider that the water-table correlation is different, because the current 
simulation assumes a constant recharge at the ground surface (without considering 
individual precipitation events). In addition, the current water table is approximate 
based on the pressure, which will be fixed in the near future. In the nitrate 
concentration (Fig. 8a) and pH (Fig. 8b), the predicted correlations are linear between 
1993 and 2005, similar to the observations at the same wells, confirming the 
consistency between the model results and data. In addition, modeling also allows us 
to extrapolate the correlations into the future. The simulated results show that the 
pH-U correlations will be linear and constant until 2100, while the EC-U correlation will 
nonlinear and change over time.  
 

 
(a)       (b)    (c) 
Figure 8. Simulated correlations between uranium (U) concentration (log-transformed 
mol/L) and controlling variables at FSB95D and Well FSB110D: (a) nitrate 
concentration (log-transformed mol/L), (b) pH and (c) water table. In each plot, the 
solid lines are between 1954 and 1993, the circles are between 1993 and 2005 
(corresponding to the observations in Fig. 4) and the dotted lines are between 2005 
and 2100. The black arrows in each plot represent the direction of the time evolution 
from 1954 to 2100. 
 
CONCLUSIONS 
In this study, we demonstrated our combined modeling and statistical analysis 
approach to improve the long-term monitoring strategy at the SRS F-Area site. We 
developed a 3D flow and reactive transport model to describe the contaminant plume 
evolution in a mechanistic manner, including the complex pH-dependent reactions of 
uranium. In parallel, statistical analysis was applied to the historical datasets at the 
site to assess the correlations between radionuclide and nitrate concentrations and 
pH. Although our results are still preliminary, modeling results and data analysis 



WM2016 Conference, March 6 – 10, 2016, Phoenix, Arizona, USA 

 

14 

 

showed consistent correlations between controlling variables and uranium 
concentrations. These results confirm that the approach proposed by the ABRS-AFRI 
is promising for the long-term monitoring.   
 
Our results showed that the uranium concentrations could be described as a function 
of controlling variables – particularly pH – measurable by in situ sensors. However, 
the parameters in the functions (such as the slope parameter in a linear model) 
depended on species, time and locations over the site. The uncertainty of those 
parameters was spatially and temporally variable as well. Our results suggest that the 
in situ sensors must be installed in groundwater monitoring wells over the site more 
strategically, and also occasional ground-truth measurements (i.e., groundwater 
sampling) are necessary to estimate those parameters accurately over time. It would 
be important that modeling and data analytics are in place at the site to iteratively 
validate and improve the monitoring approach over time.  
 
Our future work will focus on improving this 3D model through parameter estimation 
and also including the water-table fluctuation as well as improved chemistry models 
for uranium and other species (particularly iodine). In addition, we will perform UQ to 
investigate the impact of the uncertainties and variability in hydrological and 
geochemical parameters, and also to predict the impact of the future hydrological 
shift. In parallel, we will use this model to evaluate the efficacy of the current or 
planned remediation treatments, and their impact on the long-term monitoring 
strategy.  
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