PARSONS

Salt Waste Processing Facility Status, Lessons Learned and Path Forward

Frank Sheppard, Jr.

Vice President/ SWPF Deputy Project Manager Waste Management Symposia 2015 Savannah River Site March 17, 2015

Savannah River Site

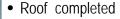
SWPF Construction Progress

Basemat Installed

- Performance Category 3 (PC-3)
- 8-feet thick
- 32,943 square feet
- 10,032 cubic yards

TODAY

First Story Under Construction


- Walls to 100 ft. elev. Completed
- Began installation of process piping
- Wall placement to 139 ft. elev. in progress
- Successful installation of contactor modules
- · Dark cells fabricated

Vessel Placement

- Successful installation of
- 10 large ASME Vessels
- 150,000 gal. of tank volume in CPA
- PC-1 support structures underway

TODAY - 83% Physical Completion

- HVAC 92% complete
- Ventilation stack completed
- Fire coatings complete
- Transformers and switchgear in place
- · All major process equipment in place
- Waste transfer line installation complete

- 100,000+ LF of piping installed (87% complete)
- 83,000 welds made (93% complete)
- 120,000 LF of conduit installed (85% complete)
- 380,000 LF of wire and cable installed (60% complete)

Cesium Removal Contactors Arrival and Installation (December 2010)

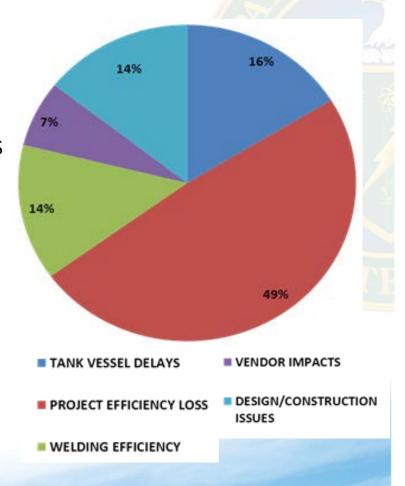
Large ASME Vessels Delivered (June/July 2012)

Alpha Finishing Tanks (December 2013)

Waste Transfer Line Installation (April 2014)

SWPF Test Program

- Extensive Test Program Demonstrated Alpha Strike Process and Caustic-side Solvent Extraction Process Met or Exceeded 100% Capacity
- Robust Operating Envelope Developed to Provide Flexibility of Operations
- On-going Tests Reliability/Maintainability Increase Throughput



SWPF Project Challenges

- Delay in vessel delivery
 - > Two (2) year impact to schedule
 - > Hotel load to maintain Key Project Personnel
- Construction re-sequenced to maintain progress
 - > Resulted in Project Inefficiencies
 - Cost impact to attract/maintain skilled labor in a competitive environment
 - > Design iterations to accommodate vessel delay
- Lack of NQA-1 qualified vendors resulted in increased oversight/vendor cost increases (contactors, DCS, tanks, etc)
- Piping and pipe support installation
 - > Availability of skilled welders/quality of welds
- Resolution of design/construction issues

SWPF Performance

- Reinvigorate Risk and overall EAC reviews
- Simplified WBS Structure
- Reduced number of CAMs and FAMs increased accountability on performance and metrics
- Schedule Performance
 - > Target Date for Construction Complete is December 2016
 - ➤ Current Projected Completion Date is May 12, 2016
 - > SPI = 1.04
- Cost Performance
 - ➤ Target Cost for Construction Complete = \$530M
 - > Current Projected Cost = \$482.6M
 - ➤ CPI = 1.08
- Recently develop a Parsons' PMB Integrated Baseline Review conducted February 2-13, 2015

Lessons Learned - Construction

- Establish and use a standing Constructability Review Team
- Construction and Engineering participation
- Establish early in Design and continue through Construction
- Examples of success
 - > Embedded drop lines for construction openings
 - > Cast-in-place formwork
 - ➤ Mesh cover for rebar
- Establish "smart" weld lots
 - > Optimization between volume of examinations and progressive sampling exposure
- Screen welders with a rigorous qualification program

Lessons Learned – Project Management

- Never lose focus on overall cost and schedule impacts
- Set aggressive targets and goals for you Control Account Managers and hold them accountable to deliver
- Never underestimate the baseline or contingency. Things rarely are "best case" in NQA-1 first-of-a-kind projects
- Assess all Risks project wide identify trends early
 - ➤ Mitigate, mitigate, mitigate
- Depending on the contract type tailor the application of EVMS, Baseline Change Control and reporting

Lessons Learned - Summary

- Success is possible on complex DOE nuclear capital projects!!!!
 - Good leadership and personnel are the foundation
 - Stable Funding
 - Plan with Realism
 - Work the Plan Control and Accountability
 - Design with Margin
 - Overlapping of Construction and Testing & Commissioning
 - Inspect with Perspective

Succeed Together as a Team

Looking to the Future/Path Forward

- High degree of technical confidence
- Maintain safety, cost and schedule performance under the new baseline
- Integrate NGS and High Sodium processing to enhance throughput
- Optimize facility operability
- Maintain integration with the Liquid Waste Program
- Minimize Liquid Waste lifecycle costs Full Solution to SRS Tank Closure

Salt Waste Processing Facility

PARSONS

Parsons is the contractor for the SWPF project (design, construct, commission and operate for one year)

This essential facility will:

- Reduce radioactive waste volume requiring vitrification
- Utilize the same actinide and cesium removal unit processes as Interim Salt Processing Facilities (ARP/MCU)
- Process over 90% of Tank
 Farm liquid radioactive waste
 (97 Mgal. after dissolution)
- Have a nominal capacity of6 9 million gallons per year

Savannah River Site