WM2015, March 15-19, Phoenix, Arizona.

Panel - International deep repository progress The case of Switzerland

Irina Gaus, RD&D coordinator

Swiss waste management concept

Two geological repositories:

- Low and intermediate waste (L/ILW) → L/ILW repository

Nagra – Mission

- Nagra (National Cooperative for the Disposal of Radioactive Waste) was established in 1972 to develop and implement safe, sustainable solutions for the management of all types of radioactive waste in Switzerland
- Financed by the waste producers (NPPs / Swiss Confederation for MIR waste); cost of disposal ~ 1 Rp/kWh
- Staff: ~ 100, mainly scientists and engineers

- Collaborative research with more than 10 countries
- Annual expenditure: around EUR 60 million (CHF 60 million)

Swiss concept for the HLW¹ repository

- HLW/SF repository
- ❷ LL-ILW repository
- Pilot repository
- Test area (rock laboratory)
- Access tunnel
- **O** Ventilation and construction shafts

High-level radioactive waste, spent fuel and longlived intermediate level radioactive waste

Research at underground rock laboratories

Owned by the Canton of Jura Operated by swisstopo In operation since **1996**

*

Mont Terri Project

Opalinus Clay

Grimsel Test Site

Crystalline rock

Development of the geological repositories - Milestones

The 'Sectoral Plan' (the rules for site selection) ¹

Sectoral Plan – Stepwise Approach

Source: Bundesamt für Energie (BFE

Stage 1: Siting regions proposed by Nagra

Approved by the Swiss Federal Government – November 2011

 Derived in a systematic, step-wise narrowing-down process based on safety and engineering feasibility

Stage 2: Proposed siting areas for surface facilities

Narrowing-down process with site selection criteria based on:

- Safety and engineering feasibility
- Environmental protection and land use planning
- Integration of facilities in the siting region

In Switzerland – there is always someone close

... and this leads to strong public involvement through a participatory process (in an critical, but constructive manner)

(NTB 11-01)

Participation in Stage 2

Regional Conference

Activities

- Discussion of surface facilities
- Studies related to land use and socio-economic aspects
 - Projects for the sustainable development of the region

Stage 2: Site evaluation – Long-term Safety

- Range of maxima from the calculational cases for a site as specified in the regulatory guideline
- All sites below the regulatory limit

Example of safety analysis calculations

Dosis [mSv/Jahr]

Stage 2: Site evaluation - Indicators

HLW repositor				L/ILW repository					
Decision-relevant features / Decision-relevant indicators	Zürich Nordost	Nördlich Läge rn	Jura Ost	Südranden	Zürich Nordost	Nördlich Lägern	Jura Ost	Jura- Südfuss	Wellen- berg
Effectiveness of the geological barrier (E)									
Hydraulic conductivity									
Type of transport pathways and structure									
of the pore space									
Transmissivity of preferential release pathways									
Self-sealing capacity									
Homogeneity of the rock structure									
Thickness									
Length of critical release pathways									
Colloids									
Long-term stability of the geological barrier (S)									
Conceptual models of long-term evolution									
(geodynamics and neotectonics; other processes)									
Self-sealing capacity									
Potential for formation of new water flowpaths (karstification)									
Erosion during the time period under consideration									
Depth below the local erosion base level as relevant for formation of new ice-marginal									
drainage channels									
Depth below terrain as relevant for rock decompaction									
Depth below top bedrock as relevant for glacial overdeepening									
Seismicity									
Explorability and ease of characterisation of the geological barrier in the siting region (C)									
Variability of the rock properties as relevant for their ease of characterisation									
Exploration conditions in the geological underground									
Engineering feasibility (F)									
Depth with respect to engineering feasibility [considering rock strength and deformation properties]									
Geotechnical and hydrogeological conditions in overlying rock formations									
Available space underground									

Stage 2: Sites proposed by Nagra (Dec. 2014)

Next: Exploration program – Example: Jura Ost

WM2015 Phoenix - 15-19 March - I.Gaus

Next steps in the site selection process

- Stage 2: Selection of at least two sites for each repository
 - 2015-2017:
 - Review of Nagra's proposals by:
 - ENSI (Nuclear Safety Inspectorate) and EGT (Expert Group Geologic Disposal)
 - NSC (Nuclear Safety Commission)
 - Federal Offices, Cantons, Regional Conferences
 - Public hearings
 - Position and recommendation to the Federal Council by Swiss Federal Offcie of Energy
 - 2017: Federal Council decision on Stage 2
- Stage 3: Selection of one site for each repository (with the option of building both repositories at the same site):
 - Announcement around 2019/2020
 - Submission of general license application (around 2022)
- Followed by a decision of the Federal Council on site selection, a debate in Parliament and an optional referendum at the national level

FE/LUCOEX – Full scale emplacement experiment

- Demonstration of buffer emplacement technology
- Study of the early time evolution of the SF-HLW disposal system – THM: thermal, hydraulic, mechanical
- Layout based on Spent Fuel emplacement tunnel design
- Heating phase started in Jan 2015 (~150°C at canister surface)

FE: construction and backfilling

Mont Terri Project

© COMET

Thank you for your interest **nagra**