DE LA RECHERCHE À L'INDUSTRIE

Waste Management Symposium 2015 March 16th, 2015 – Phoenix, USA

CEA'S DECOMMISSIONING

Strategies & Options

Immediate, deferred, entombment

Laurence Piketty CEA / Nuclear Energy Division Cleaning & dismantling Program Director

www.cea.fr

Two strategies:

Immediate dismantling

The dismantling commences after the end of the operation

Safe enclosure (Deferred dismantling)

The nuclear facility plant will be locked for about 30-50 years After this period a dismantling will take place

<u>One option</u>:

Entombment

The nuclear power plant will be entombed "forever"

- At the end of their operating time nuclear facilities reach the end of their service life
- The end of the service life typically depends on technical and/or economical marginal conditions
- Legal obligations may play a role
- The end of the life cycle leads to the decommissioning of the nuclear facilities
- The need of a free site for erecting a new facility

Cea Basic aspects - International recommendations

IAEA Safety guides

 \checkmark

Decommissioning of Nuclear Power Plants and Research

Decommissioning of facilities using radioactive Material

Reactors Safety Guide N° WS-G-2.1, 1999 n° WS-R-5

- ✓ Safety reports Series N° 50
- ✓ Decommissioning Strategies for facilities using radioactive material
- Safety guides for nuclear waste, i.e. for nuclear facilities as long they are used and for disposal facilities

WENRA (Western European Nuclear Regulator's Association)

- ✓ WGWD Decommissioning Safety Reference Levels Report (version 2.0, November 2011)
- ✓ WGWD Waste and spent fuel storage safety reference levels report (version 1.0, December 2006, new version: version 2.2, April 2014)

- National regulations are based upon international guidelines/recommendations
- The countries have the free choice of creating their laws, international law should be respected
- Changes in the law are difficult to deal with; This may be evident if the decommission process is already running

Which strategy? General considerations

One main strategy has to be chosen

There are several aspects for the choice of the strategy i.e. legal, technical, radiological and economical aspects

The target (end state) is important:

- Deconstruction, remediation, rehabilitation and release of the site - "green fields"
- Release of existing buildings and plants industrial utilization constraints
- Further nuclear use utilization under nuclear energy law (when existing)

The type of the nuclear facility

- PWR (& VVER)
- BWR
- Gas-cooled
- RBMK
- Research Reactors
- Fuel cycle facilities (research, pilot, industrial)

Space for the flow of the waste

- Radiological aspects
- Availability of a disposal site (Repository)

Geo Factors favoring Immediate Dismantlement

- Decommissioning funds available and costs are known/estimated
- Low-level waste disposal sites are available
- Least expensive option
- Experience of facility personnel and proven technologies are available
- Minimizes future regulatory uncertainty and near-term impact to the local economy
- Presents positive public perception
- Makes site available for re-use

- Funds not available for immediate dismantlement
- Smaller radioactive waste volumes
- Lower staff radiation exposures
- More time to resolve waste management issues
- Some areas may be able to be immediately reused
- Benefit from technology enhancements

Used only in rare instances

- Geographic location remote sites
- Limited funding and resources available quick and easy solution
- However
- Waste disposal site created
- Creates longer term liability / monitoring requirement
- Presents burden to future generation

Immediate decommissioning

<u>Advantages</u>

- Personnel from operation is available (and their knowledge)
- Operating history is well known & could be recovered
- Time scale is well defined, also the costs
- Existing infrastructure can be used (i.e. ventilation, cranes)
- No further consideration of duration of life are needed
- Current laws and guidelines

Disadvantages

- Higher collective dose
- Greater complexity if shielding or remote controlled systems are used
- Final repository is needed
- Intermediate storage of radioactive waste is needed if no final repository exists

Safe enclosure, followed by decommissioning

Advantages

- Activity is reduced
- Lower collective dose
- A greater part of the material can be reused (if clearance)

Disadvantages

- Loss of knowledge and experience
- Preliminary work must be done under same dose rates like immediate decommissioning - no benefit
- Control must be established for tens of years (30-50)
- Safety relevant parts must be operated/checked/ maintained for tens of years additional lifetime
- Infrastructure like cranes and ventilation has to be assessed for tens of years
- When restarting decommissioning, facility safety must be fully renovated to fit to existing requirements - necessary to upgrade high costs

Entombment

Advantages

- 👅 Fast
- Less expensive than other methods
- Only little material goes to final repository (no big storage capacity needed)

Disadvantages

- Preliminary work must be done under same dose rates like immediate decommissioning, but less work needed
- Material can not be reused (cleared) and is wasted
- Site can not be reused
- Unwanted legacy for future generations
- Local final repositries are created
- Public opinion

What is the CEA's strategy ?

CEA chose direct dismantling

- Allows the usage of the experience and the knowledge of the personnel from operating time
- Job security for personnel, new jobs could be induced
- Leads to a clean site, ready-to-use & closes the cycle

But currently, in CEA, many dismantling operations are in progress simultaneously.

So, priorities will be to make between these different operations ...

- There are several strategies possible
- Many of these strategies have been used worldwide or are currently used
- CEA's strategy is direct decommissioning with an interim storage to reduce the amount of radioactive waste
- According to certain conditions, another strategy or mixed strategies may be chosen