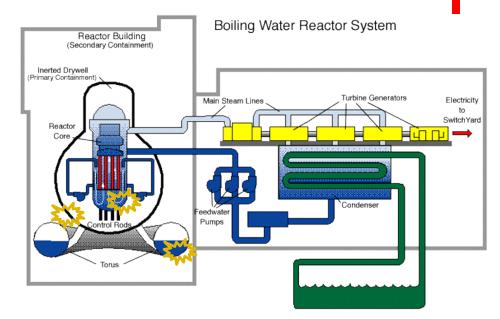


AVANTech Incorporated

Water Treatment Challenges at the Fukushima-Daiichi Nuclear Facility


James L. Braun President and CEO jbraun@avantechinc.com

March - 2015

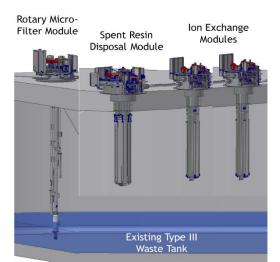
The Emergency Response

- Removal of radioisotopes in a Seawater Solution
- Deliver it in less than 8 weeks
- Start-up in less than 12 weeks
- Ensure its safe!
 - Dose Rates
 - Thermal
 - Operational Safety

Post Accident Reactor Cooling

AVANTech Response was Critical

Why AVANTech?


DOE/DOD Experience

Worldwide Expertise in Nuclear Wastewater Treatment !

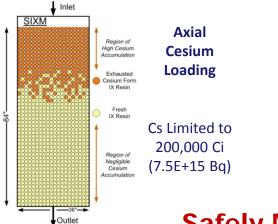
Deployment of DOE Technology

SCIX – SRR

Strategic Alliance with AVANTech

50,000 R/h on IX resin

- Crystalline Silicotitanate
- Important Underpinning
 - CST Testing at DOE Sites
 - Comprehensive CST Evaluation
 - ✓ Thermal
 - ✓ Radiological
 - ✓ Material Stability

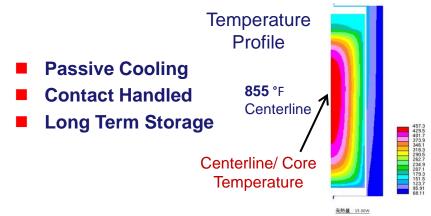

Rx Core Melt - Emergency Response

Emergency Response: The AVANTech Technical Approach

Challenge 1 – Activity Capture

Engineered Zeolite

- Primary Ion Exchange
- Distribution Coefficient (Kd) ≈ 2,000 in seawater
- Good Axial Cesium Distribution
- **Crystalline Silicotitanate**
 - Polishing Ion Exchange
 - Distribution Coefficient (Kd) > 20,000
 - Needed to achieve complete activity removal with a single pass

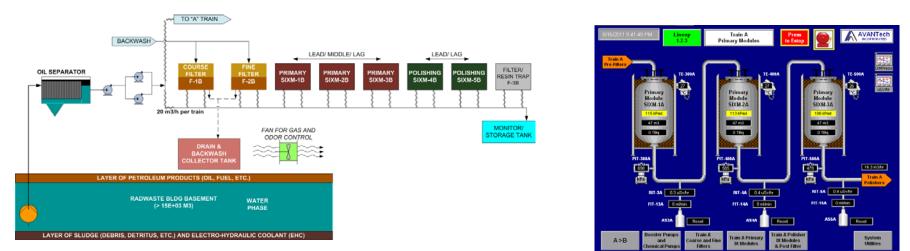

Challenge 2 – Shielding

Integral Shielding ≈ 6" Pb Equiv.

<u>Loaded Wt.:</u> ≈ 23 mt (50,000 lb)

Challenge 3 – Heat Generation

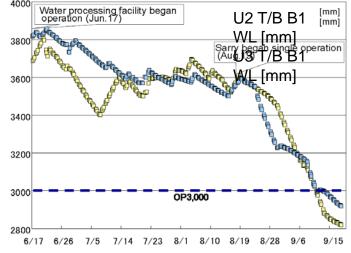
Safely Managing 200,000 Curies of Radioactive Material


Emergency Response: Process Solution

SARRY

- Pipe Racks
- SIXMs
- Flexible Hoses
- H₂ Vents

- Automatic Alignment
- DP (kPad)
- Throughput (m3)
- Rad Loading (TBq)
- Trending

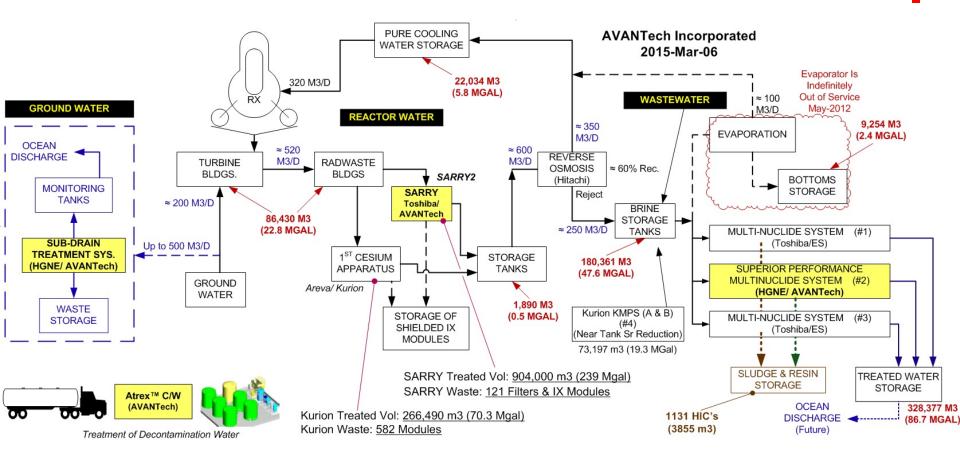


Process Optimizes Media and Decontamination Factor

Accumulated Water Volume Control

T/B B1 Water Level (WL) [mm]

SARRY Generated 13% of Waste


SARRY Processed 80% of Water
Non-detectible CS-137 effluent
DF > 2 million

Results by all Standards Exceeded Clients Expectations

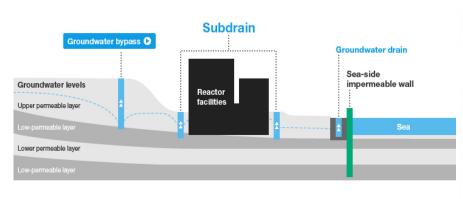


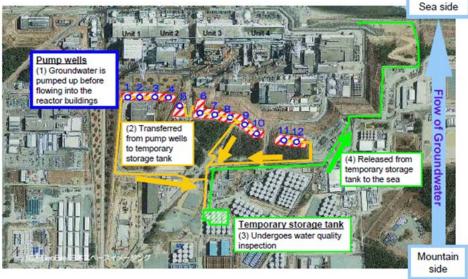
Fukushima Wastewater Overview

Water Treatment Continues to Be a Challenge

Liquid Waste Implementation Plan

Critical Support has been Provided by the Avantech Team


Groundwater Remediation


Groundwater Problem

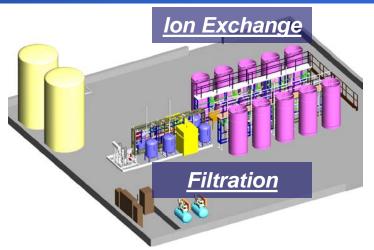
- Groundwater In-leakage of 300 tons per day
- Increased Contaminated Water
- Increased Waste Volumes

Groundwater Goals

- Rad Removal for Risk Reduction
- High TDS Influent
- Minimize Waste Generation
- Minimize Consumables

Lower Groundwater to Reduce In-Leakage

Groundwater Remediation


System Technology

- Gross Filtration
- Fine Filtration
- Ion Exchange

System Design Inputs

- 1,200 m3 per day (220 gpm)
- Chemistry
 - Cl- 800 ppm
- Activity
 - Cs-134: 0.8 Bq/ml
 - Cs-137 2.1 Bq/ml
 - Sb-125: 0.03 Bq/ml
 - Sr-90: 3.0 E-02 Bq/ml

Laboratory Scale Validation of Media

Designed, Built, Factory Tested at AVANTech

Groundwater Remediation

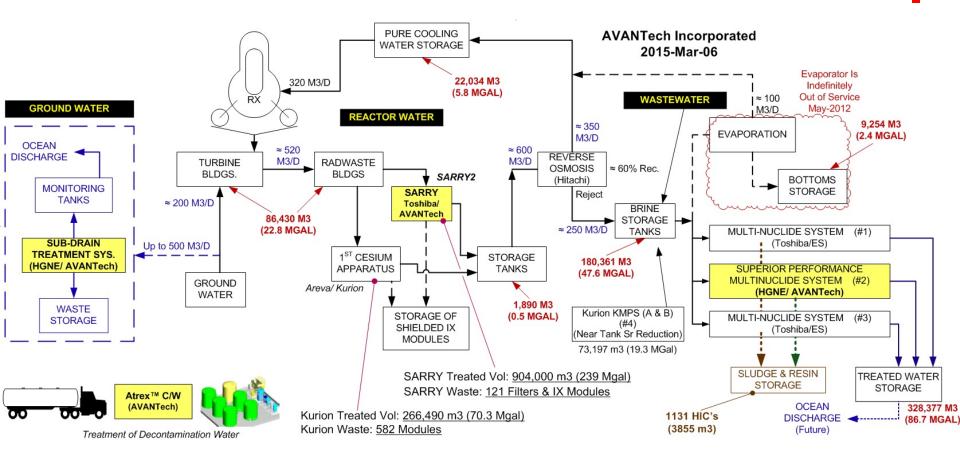
Operations

- Plug-n-Play Installation
- Automated
- Material Handling Similar to SARRY

Actual Results

- Effluent less than Regulatory Value
- Minimal Waste Generation
- Brine Operations 10/14

Controlling In-Leakage to Meet the Site Objectives

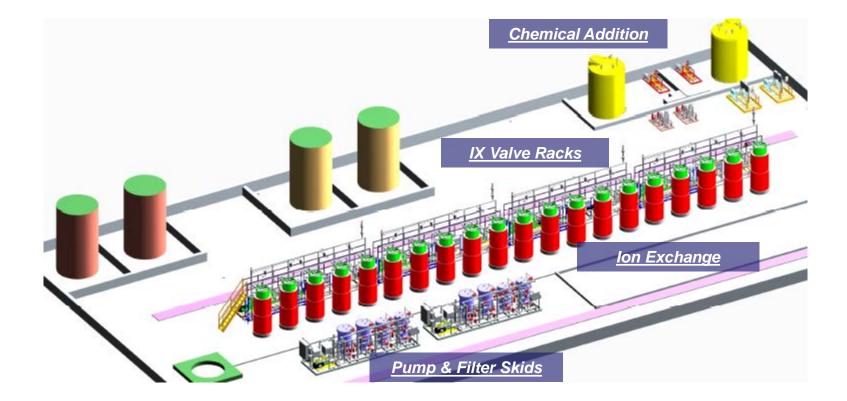


Installed Equipment

Fukushima Wastewater Overview

Water Treatment Continues to Be a Challenge

Multi-Nuclide Removal Technologies


ltem	Improved ALPS	High performance ALPS	Existing ALPS	
Treatment vol.	at least 250 m3 /day/unit	at least 500 m3 /day/unit	250 m3 /day/unit	
No. of systems	3 units	1 unit	3 units	
Pre-treatment method	Coagulating sedimentation method	Filter method	Coagulating sedimentation method	
No. of absorption towers	18 towers	20 towers	14 towers + 2 towers	
Seismic resistance class	Equivalent to Class B	Equivalent to Class B	Equivalent to Class B	
Removal capabilities	62 nuclides to ND level (excl. tritium)	62 nuclides to ND level (excl. tritium)	Same as the left	
Waste generation	N/A	To the extent of 1/20 of the existing ALPS	N/A	

- Multiple Operations to Minimize Downtime
- Multiple Technologies to Optimize Performance
- Processing Results Reflect Capacity

Approximately 50% of the Brine Has Been Processed

AVANTech Multi-Nuclide Removal

Preliminary Layout of Multinuclide Removal Facility

AVANTech Multi-Nuclide Removal

Operations

- October 2014 Start
- >15 million gallons processed
- On-going Analysis of results
- Continued Development
 - Resin Optimization Plan
 - Filtration Optimization On-going
- Consumables Support In-Place

Contaminated Water Volume (M³)

Focus is on Long Term Progress and Continuous Improvement

AVANTech Multi-Nuclide Removal

System Solution

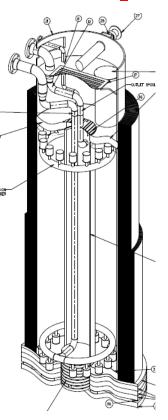
- Gross Filtration
- Fine Filtration
- Ion Exchange

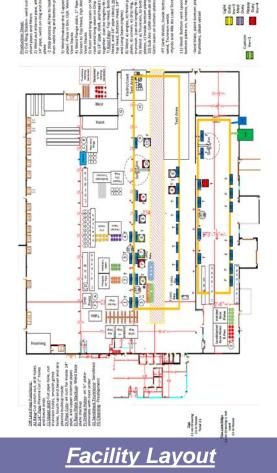
System Design Inputs

- 500 m3 per day (92 gpm)
- Chemistry
 - CI- 6000 ppm Average
 - Ca 300 ppm
 - Mg 400 ppm
 - PH: 7.5

Activity

- Cs-134: 1E2 Bq/ml
- Cs-137 1E2 Bq/ml
- I-129: 9 E-02 Bq/ml
- Co-60: 6.6E-01 Bq/ml
- Sb-125: 5E2 Bq/ml
- Mn-54: 7.9E-1 Bq/ml
- Ru-106: 2E2 Bq/ml
- Sr-90: 1E6 Bq/ml





IX Vessel Customized for Application

AVANTech Advanced Manufacturing

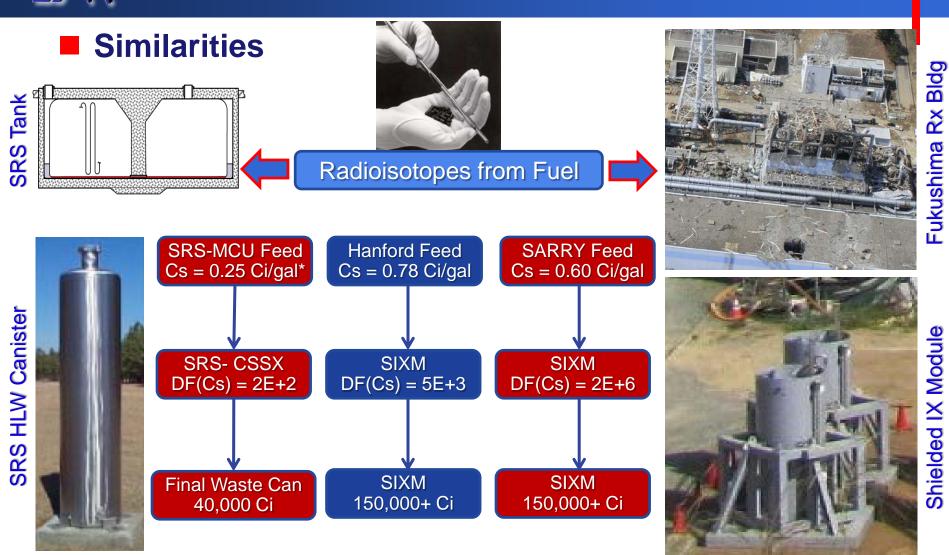
Project 13-20 Vessel Weld Data Sheet

							-		
Date:	10/20/14 1320-15 (A23) 1320 11405-1320-D 11405-1320-D-WELDMAP				Page: 10	(of 17		
Traveler No:									
Avantech Project:									
Fabrication DWG No.:					UNS# S32205 BASE METAL				
Weld Map DWG No:									
WPS:	2	AT-FCAW-08-SS	3	AT-GMAW-FCAW-09-SS AT-GTAW-18-DSS		5	AT-FCAW-12-CS-SS		
WPS:	7	AT-FCAW-05-CS	9			10	AT-SAW-27-DSS-2205		
WPS:	11	AT-SAW-21-CS	12	AT-GMAW	FCAW-23-DSS-2205	13	AT-GMAW-FCAW-06-CS		
WPS:	14	AT-GTAW-20-DSS-SS	15	AT-SAW-	30-DSS-SS-2205	16	AT-FCAW-29-DSS-SS-2205		
WPS:	17	AT-FCAW-35-DSS-CS-2205	21	AT-FCAW	-41-DSS-2205				

REQUIREMENTS											
Weld ID Number		25 A23		29 A23		30 A23		31 A23			
WPS No.		14	14	16	16	2	2	9	9		
Welding Condition	Fit-up Weld Out	WPS N	o. 🗹	WPS N	b. 🗹	WPS N	o. 🗹	WPS No	. 🗹		
		Curren	t (A) Check 🗹	Current	(A) Check 🗹	Current	t (A) Check 🗹	Current	(A) Check 🗹		
		Voltage	(V) Check 🗹	Voltage	(V) Check 🗹	Voltage	(V) Check 🗹	☑ Voltage	(V) Check 🗹		
		Shield	Gas 🗹	Shield	Gas 🗹	Shield	Gas 🗹	Shield C	Gas 🗹		
		Backin	g Gas 🔳	Backing	Gas 📕	Backing	g Gas 📕	Backing	Gas 🔳		
		Positio	n Check 🗹	Positio	n Check 🗹	Positio	n Check 🗹	Position	n Check 🗹		
		Check Date & ID		Check Date & ID		Check Date & ID		Check Date & ID			
		Fit-up	Weld Out	Fit-up	Weld Out	Fit-up	Weld Out	Fit-up	Weld Out		
	Welder ID	N3	N3	G4	G4	G4	R5	G4	G4		
	Date	2-19-15	2-19-15	2-19-15	2-19-15	2-19-15	2-19-15	2-25-15	2-25-15		
Filler Metal Heat No.	Fit-Up	07	079566		2304622		13935371		QR219		
	Weld-Out	079566		2304622		13935371		QR219			
Base Metal Heat No.		A-15-1422-010		A-14-1422-2433		A-15-1422-251		A-15-1422-263			
		A-14-1422-2460		A-14-1422-2460		A-15-1422-251		E131142			
Fit-Up (Initial/Date)		Dimension		🖾 Dir	imension 🗹 D		mension	Dimension			
		Angle		Angle		Angle		Angle			
		☑ Vis	sual	☑ Visual		Visual		Visual			
		🗹 Ao	cept	Act	Accept		Accept		ept		
		AH 2-19-15		AH 2-19-15		AH 2-19-15		AH 2-25-15			
Root Pass Visual Inspection (Initial/Date)		Accept		Accept		Accept		Acc	ept		
		AH 2-19-15		AH 2-19-15		AH 2-19-15			2-25-15		
	In-Process Inspection		cept	Act	:ept		cept	Acc 🖸	ept		
(Initial/Date)		AH 2-19-15		AH 2-19-15		KAC 2-19-15		AH 2-25-15			
Final Visual Inspection (Initial/Date)			cept		:ept		cept		ept		
	()		AH 2-19-15 Accept		AH 2-19-15		KAC 2-19-15 Accept		AH 2-25-15		
	Final NDE (Initial/Date)		cept		ept				ept		
			N/A		N/A		N/A		N/A		

*N/A if not applicable FINAL REVIEW AND APPROVAL

AVANTECH QUALITY MANAGER


Automated Documentation

DATE

Production Capacity Increase of 400%

Facility Operation

Future Cs Applications?

If you can Conceive and Believe You can Achieve