

Office of Nuclear Energy Activities Supporting the Management of Used Nuclear Fuel and High-Level Radioactive Waste in the United States

Andrew Griffith Acting Associate Deputy Assistant Secretary for Fuel Cycle Technologies Office of Nuclear Energy

> Waste Management '15 Phoenix, AZ March 2015

Nuclear Energy

Key Elements of Administration Strategy January 2013

Elements of the Administration Strategy

Nuclear Energy

- Facilities sited using consent-based process and licensed by the Nuclear Regulatory Commission
- Pilot-scale interim storage facility
 - Operational in 2021
- Consolidated interim storage facility
 - Operational in 2025
- **Geologic Repository**
 - Sited using consent-based process by 2026
 - Designed and licensed by 2042
 - Operational in 2048

Used Nuclear Fuel Disposition Mission

Nuclear Energy

- Used Nuclear Fuel Disposition R&D Campaign Identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles.
 - **Nuclear Fuels Storage and Transportation Planning Project** *Lay the groundwork for implementing interim storage, including associated transportation, per the Administration's Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste, and develop a foundation for a new nuclear waste management organization.*

Used Nuclear Fuel Disposition: Interim Storage Planning

Nuclear Energy

Begin laying the ground work for implementing interim consolidated storage:

- Perform systems analysis and design studies for interim storage facilities
- Promote better integration of storage into waste management system
- Compile lessons-learned relative to siting process
- Evaluate system benefits of standardization

Used Nuclear Fuel Disposition: Transportation Planning

Nuclear Energy

Prepare for the eventual large-scale transport of used nuclear fuel and high-level waste:

- Collaborate with stakeholders on revised NWPA Section 180(c) Policy and National Transportation Plan
- Evaluate the inventory, transportation interface, and shipping status of used nuclear fuel, initial focus on shut-down reactor sites
- Assess and address transportation needs, (e.g., rail cars, casks, support and security).

Facilities and railcars at Valognes Railway Terminal

Used Nuclear Fuel Disposition Extended Storage & Transportation R&D

Nuclear Energy

Better understand degradation mechanisms relevant to longterm storage and subsequent transportation:

- Potential for corrosion of stainless steel canisters
- Thermal history of used fuel in storage
- Effects of hydride formation and reorientation on the material properties of high-burnup cladding
- Mechanical loads on fuel assemblies during normal conditions of transport

Used Nuclear Fuel Disposition Cask Storage Demonstration R&D

Nuclear Energy

The Cask Storage Demonstration contract was awarded to the EPRI Team to evaluate extended storage of high burnup used nuclear fuel:

North Anna Nuclear Power Plant

AREVA Federal Services AREVA Transnuclear AREVA Fuels

Used Nuclear Fuel Disposition Disposal R&D

Nuclear Energy

- Provide a sound technical basis for the assertion that the U.S. has multiple viable disposal options
- Increase confidence in the robustness of generic disposal concepts
- Develop plan for field test of deep borehole disposal concept
- Evaluate the technical feasibility of the direct disposal of existing storage and transportation canisters

Deep Borehole Concept: Improving Scientific Understanding with a Field Experiment

Nuclear Energy

Several factors suggest the disposal concept is viable and safe:

- Crystalline basement rocks are common in many stable continental regions
- Existing drilling technology permits dependable construction at acceptable cost
- Low permeability and long residence time of high-salinity groundwater in deep continental crystalline basement at many locations suggests very limited interaction with shallow fresh groundwater resources

Nuclear Energy

Deep Borehole Concept: Improving Scientific Understanding with a Field Experiment

DOE's proposed Deep Borehole field test is the next logical step in evaluating the DBH concept and is part of the Department's cross cut in subsurface research.

• No radioactive waste will be used during the field test.

The DBH Field Test will:

- Demonstrate the feasibility of characterizing and engineering deep boreholes
- Demonstrate safe processes and operations for safe waste emplacement downhole

Background Strategic Plan for International Program

Nuclear Energy

The DOE Office of Nuclear Energy has four strategic goals for the UFD International Program

- Leverage global knowledge to meet domestic goals
- Increase global deployment of advanced technology
- Build a foundation for collaboration, trust, and joint action
- Accelerate global learning and innovation

http://www.energy.gov/ne/downloads/office-unf-dispositioninternational-program-strategic-plan

2014 International Collaboration Report

Nuclear Energy

Content of Report:

- International Opportunities and Strategic Considerations
- Multinational Cooperative Initiatives
- Bilateral Collaboration Opportunities
- Selection of International Collaboration Activities
- Status of International Collaboration Activities with Focus on URL Experiments
- Brief Status of Other International Collaboration Activities

Nuclear Energy

Disposal Current Collaboration in International Partnerships/Activities

Multinational Initiatives Bilateral Agreements Mont Terri Project US-China • Participate in experiments at Mont Terri clay URL in Switzerland **Bilateral Civil Nuclear Energy Cooperative** Action Plan (BCNECAP) with working group in **DECOVALEX** Project Spent Fuel Storage and Repository Science • Participate in model comparison initiative for several URL related tasks in different host rocks US-Germany benchmarking study for Colloid Formation and Migration salt Project Participate in model comparison for TM behavior of domal and bedded salt • Participate in colloid research at Grimsel granite URL in Switzerland US-Republic of Korea (ROK) SKB Task Forces (New) **KAERI Underground Research Tunnel (KURT)**, • Participate in crystalline rock research centered experiments in crystalline rock around Äspö HRL in Sweden Joint Fuel Cycle Study (JFCS), information exchange FEBEX DP (New) in used fuel disposal • Participate in FEBEX dismantling project, which will analyze bentonite-rock behavior after 17 years of **Other Potential Opportunities** heating Explore use of existing Memorandum of Nuclear Energy Agency (NEA) Understanding (MoU) between DOE and Spain (ENRESA), France (ANDRA), Japan (JNEAP) and - Thermochemical Database Project **Belgium** Salt Club Clay Club

Conclusions

Nuclear Energy

The Department of Energy is committed to moving forward with development of management strategies and technologies for the storage and disposal of used nuclear fuel and high-level radioactive waste.

The Used Nuclear Fuel Disposition program is:

- Laying the foundation for the development of storage, transportation and disposal options.
- Evaluating the behavior of used high burnup used nuclear fuels during storage and transportation.
- Evaluating disposal options in several geologic media, including borehole disposal and direct disposal of existing canisters.