

Spent Fuel Management in the UK

Tim Tinsley

Waste Management 2015

- Overview on the UK's current plans for dealing with
 - MAGNOX fuel
 - AGR fuel
 - PWR fuel
 - Vitrified fission products
- UK perspective of reprocessing versus geologic disposal of fuel

• Spent Fuel in the UK

- Spent Fuel Management Strategies
- Reprocessing v Disposal

UK R&D and Generation I Fuels

"Exotics" in order of 500 tHM

Magnox Fuel <3,000 tHM

Images courtesy of NDA

UK Current Nuclear Fleet

• AGR

- 6 stations
- ▶ 880 1220 MWe each
- scheduled closure 2018-2023
- > anticipate 5-7 years extension
- > spent fuel 5,000 6,000 tHM

• PWR

- 1 station
- ≻ 1198 MWe
- scheduled closure 2035
- > anticipate 20 years extension
- ➢ spent fuel ~1,200tHM

http://www.edfenergy.com/about-us/energy-generation/nuclear-generation/nuclear-power-stations/

UK Fuel Storage – Future

- Spent Fuel in the UK
- Spent Fuel Management Strategies
- Reprocessing v Disposal

• Spent fuel management is a matter for the commercial judgement of its owners, subject to meeting the necessary regulatory requirements.

- UK is pursuing an Open Fuel Cycle post 2020
- UK Government recognises nuclear power as a low carbon energy source, and are considering pathways that could deliver up to 75GW installed nuclear capacity by ~2050
- The option for a future transition to a Closed Fuel Cycle remains

https://www.gov.uk/government/publications/the-carbon-plan-reducinggreenhouse-gas-emissions--2 https://www.gov.uk/government/publications/nuclear-energy-research-anddevelopment-roadmap-future-pathways

Current strategy for spent Magnox fuel management is:

- Interim stored and reprocessed
 - Reprocessing contracts expected to be complete by end 2020

Current strategy for AGR spent fuel management is:

- Interim stored and reprocessed
 - Reprocessing contracts expected to be complete by end 2018
- Long term stored pending geological disposal
 Centralised ("Away from Reactor") storage

• "Exotic" fuel will be stored pending geological disposal

- > Consolidate fuel to centralised storage
- Characterisation and repacking for long term storage
- Preference for pond storage

UK Spent Fuel Management - LWR NATIONAL NUCLEAR LABORATORY

Current strategy for LWR spent fuel management is:

- Long term stored pending geological disposal
- Current Reactor (EDF)
 - "At Reactor" storage
 - Reactor storage pond nearing capacity
 - Implementing limited dry storage
- New Build
 - "At Reactor" storage
 - whole-life station fuel generation
 - > remains after reactor decommissioning
 - Storage technology selection not finalised
 - > EPR GDA includes interim pond storage
 - > ABWR GDA includes pond and dry storage options
- Utilities have option to set own strategies and provide alternative justifications if they so choose

- Historically UK has reprocessed its spent fuel from power reactors
 - 50,000 tHM of Magnox fuel
 - 10,000 tHM of oxide fuel (AGR, SGHWR & overseas LWR)
- Vitrified HLW is stored in air-cooled vault stores pending geological disposal
- Vitrified HLW is a core part of the GDF baseline inventory

- Spent Fuel in the UK
- Spent Fuel Management Strategies
- Reprocessing v Disposal

Original case for reprocessing

- Requirement for separated Pu for fast reactors
- Concerns over storage of AGR fuel
- International reprocessing business benefits

Considerations

• Economic

- Investment requirements for reprocessing beyond baseload
- Economic advantage arising from reduced GDF footprint not significant
- No new build operator indicating desire to reprocess fuel

Technical

- Long term storage of AGR fuel is technically underpinned for current storage needs and ongoing R&D is expected to close gaps and maintain critical skills and capabilities.
- AGR fuel assessed as being disposable.
- Fast reactor deployment too far in future
- For NDA, storage and disposal is most cost effective solution for its liabilities

Nuclear Fuel Cycle Analysis

- Nuclear Scenario Roadmaps
 - Open and Closed fuel cycles
 - Various reactor and fuel systems
 - Implications and decision points explored
- NNL have modelled
 - LWR to SFR transition
 - Np and Am recycle

Impact of Plutonium Availability on Installed Capacity

Decay Heat in Repository for Different Fuel Cycle Scenarios

HLW repository size dependent on total energy deposited in scenario

Thank you for your time