ASCEM Site Applications

Underground Test Area (UGTA) Site Application

Justin Marble¹

Bill Wilborn², Paul Dixon³, Zhiming Lu³, Dylan Harp³, Edward Kwicklis³, Terry Miller³, Andrew Wolfsberg³ and Kay Birdsell³

> March 18, 2015 WM2015

¹U.S. DOE, Office of Soil and Groundwater Remediation, ²U.S. DOE, NNSA Nevada Field Office ³Los Alamos National Laboratory

LA-UR-15-21659

ascemdoe.org

ASCEM

Advanced Simulation Capability for Environmental Management

- ➢ Purpose → Aid Sites
 - Support Performance Assessments at DOE sites
 - Simulate and Visualize Complex Systems
- Modeling toolsets for simulating contaminant fate and transport through natural and engineered systems
 - High Performance Computing (HPC) subsurface flow and transport simulator
 - Platform pre- and post-processing toolsets, job launching, and monitoring
 - <u>Site Applications testing,</u> <u>demonstration, and deployment</u>
- Collaborative, multi-national laboratory project sponsored by DOE – EM
- Modular, extensible and open-source design

Underground Test Area (UGTA) Activity

UGTA Activity – Assess groundwater contamination at NNSS (former NTS) from 828 underground nuclear tests conducted between 1957 and 1992

Project goals

- 5 Corrective Action Units
 - 3 in advanced state of analysis
 - <u>Central and Western Pahute Mesa CAUs in</u> <u>Corrective Action Investigation Phase</u>
- Forecast extent of contaminated groundwater for 1000 years
- Define groundwater use-restriction boundaries
- Design groundwater monitoring networks

Site characteristics

- Complex geologic setting
- Fractured and faulted volcanic and carbonate aquifers
- Deep water tables
- Multiple contaminant sources

UGTA Site Application – Pahute Mesa Focus

- Leveraging UGTA and ASCEM support to optimize project success
- > Exploring high-resolution models for assessing conceptual model uncertainty
 - Realistic flow and transport runs on a large-scale, faulted, complex hydrostratigraphic domain
 - Simultaneous inversion of multiple pump tests for parameter estimation (PE) requires HPC
 - Provides justification for model simplification for Monte Carlo regulatory calculations
- FY14 UGTA Demonstration Single well pump test (U20-WW)
 - Amanzi verification of 3 pumping solutions (compare to analytical and FEHM solutions)
 - Testing of ASCEM Uncertainty Quantification (UQ) and PE tools using UGTA pump test data
 - Walkabout/Plumecalc (particle tracking) implementation, verification, and demonstration for UGTA test case
- > FY15 UGTA Demonstration Large domain, multiple well pump tests
 - Amanzi flow solution
 - Parameter estimation using steady-state heads and transient pump test data from a dozen wells
 - Particle tracking solution from 49 detonations

Pahute Mesa – Model Domains

FY14 Model Domain

- U20-WW Pump Test Domain
- 5 km x 5 km x 1.4 km
- 15k and 125k nodes

FY15 Model Domain

- Large-Scale Test-Bed Model
- 20 km x 35 km x 2.5 km
- 7.06 M nodes

FY14 UGTA Site Application: U-20WW Pump Test

UGTA Site Application Parameter Estimation Tool

- 2 other observations wellsnegligible drawdown matched
- 10 parameters estimated
- 4 rock units and the fault system
 - Permeability
 - Specific storage

UGTA Site Application Uncertainty Quantification Tool

U-20WW Pump Test

- 5000 simulations run
- 10 parameters sampled with Latin Hypercube Sampling
- k, Ss for 4 units and faults
- UQ narrowed parameter ranges for:
- 2 of 4 hydrologic units (between pumping well and observation well with greatest drawdown)
- the fault zones

UGTA Site Application Set Up for Particle Tracking Simulations

U20-WW Domain: 125k elements; 5-fault model
Grid resolution: 100m x 100m in horizontal; variable in vertical (about 25m)
Heterogeneous hydraulic properties: Derived from inversion results
Steady-flow boundary conditions: Hydrostatic conditions on side boundaries; no-flow top and bottom

Particle Tracking: (Walkabout) 125k particles instantaneously released (at internal node) Convolution integral (PlumeCalc): Generates plume, assumes constant source in this example

Walkabout (Particle Tracking) and PlumeCalc (Convolution Integral) transport in U20-WW Domain

(blue)

- Plume bifurcation around low permeability features
- Highlights need for including detailed hydrostratigraphy

FY15 - Preliminary Model Set-up

- Model domain includes 49 deep nuclear detonations
 - 45 (in blue) are below or within 2 cavity radii of the water table
 - 4 others (in red)
- Active model domain extends from water table to 1,000 m below sea level
- Measured hydraulic heads indicate flow exits the southwest quadrant of model domain
- Model grid is $\Delta X = \Delta Y = 100$ m and $\Delta Z = 25$ m
 - 7.06 M nodes beneath water table
- Model Boundary Conditions
 - Observed hydraulic heads applied to sides of model
 - Top and bottom are assumed no-flow boundaries (no recharge in preliminary runs)

Pahute Mesa Test-Bed Model

- New high-fidelity (7M+ nodes) AMANZI model for Pahute Mesa transport corridor (Area 20, Bench and NW Caldera); 95 units and 44 faults
- Goals of the Test Bed Model
 - Demonstrate HPC capability for flow and transport in a geologically complex environment
 - Test conceptual models of flow and transport in western Pahute Mesa
 - Estimate flow & transport parameters using transient hydraulic test data, steady-state heads, and observed contaminant extent
 - Provide basis for model simplification as may be appropriate for regulatory calculations and/or extensive Monte Carlo runs

ascemdoe.org

Preliminary Test-Bed Model Results

- Model calibration to occur Spring 2015
- Preliminary results assume typical permeabilities for known aquifer types
 - Faults: 1.e-11 m²
 - Lava & welded tuff aquifers: 1.e-12 m²
 - Tuff confining & composite units: 1.e-13 m²
 - Intrusive confining units: 1.e-14 m²
- Preliminary flow results and particle tracks reflect prescribed permeabilities
 - With these assumptions, particles tend to follow faults along much of their travel distance

Particle Tracks from 9 sources

Summary

- Collaborative partnership between UGTA and ASCEM results in substantial mutual benefits to both parties
 - State-of-the-art HPC simulation capability available to UGTA
 - Provides high-resolution simulations for conceptual model testing, parameter estimation and up-scaling, and model simplification
 - Code capability testing on complex field site for ASCEM
- Previous years' (FY12-FY14) collaboration has implemented and tested new capabilities for flow and radionuclide transport relevant to UGTA, particularly for the Pahute Mesa CAUs
- FY15 collaboration will demonstrate integrated capabilities for flow and radionuclide transport in a fractured and faulted, geologically complex environment at high resolution

