# Using Salmon as a Bioindicator of the Health of the Columbia River at Hanford

# BACKGROUND

\*Assessing human, ecological, and cultural health on DOE-sites is important to legacy wastes management

\*Assessment is especially important at Hanford because of the Columbia River.

\*The Columbia River is central to the culture and economy of the northwest, especially Tribes.

\*Salmon are an iconic, keystone species for the Columbia River





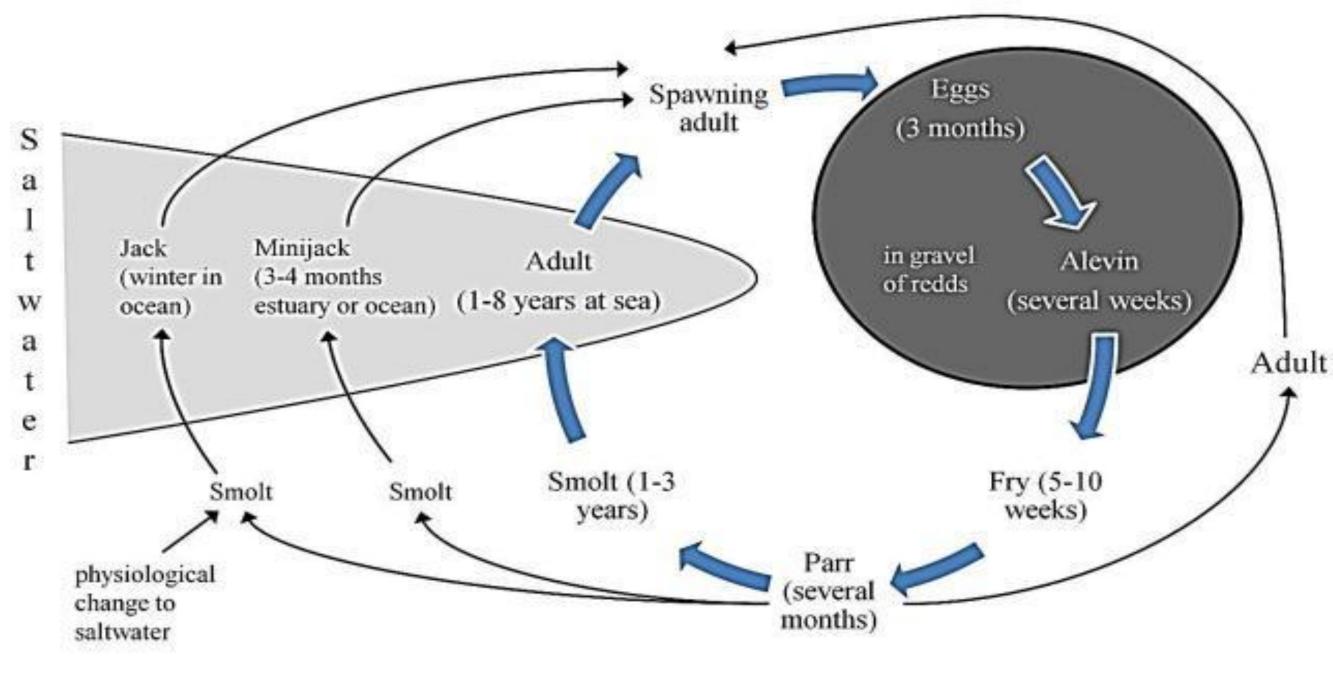
# **OBJECTIVES**

•To develop a biomonitoring plan that will assure the public that DOE (past & present) activities are not adversely impacting the salmon populations in the Columbia River

# METHODS

\*Reading and synthesizing information from books, refereed literature, and grey literature

\*Synthesize a model or paradigm of factors affecting salmon populations


### APPROACH

- 1. Understand salmon life cycles
- 2. Identify pressure points and vulnerabilities
- 3. Understand factors affecting reproduction and survival
- 4. Select endpoints



# LIFE CYCLE OF SALMON

#### Chinook Salmon

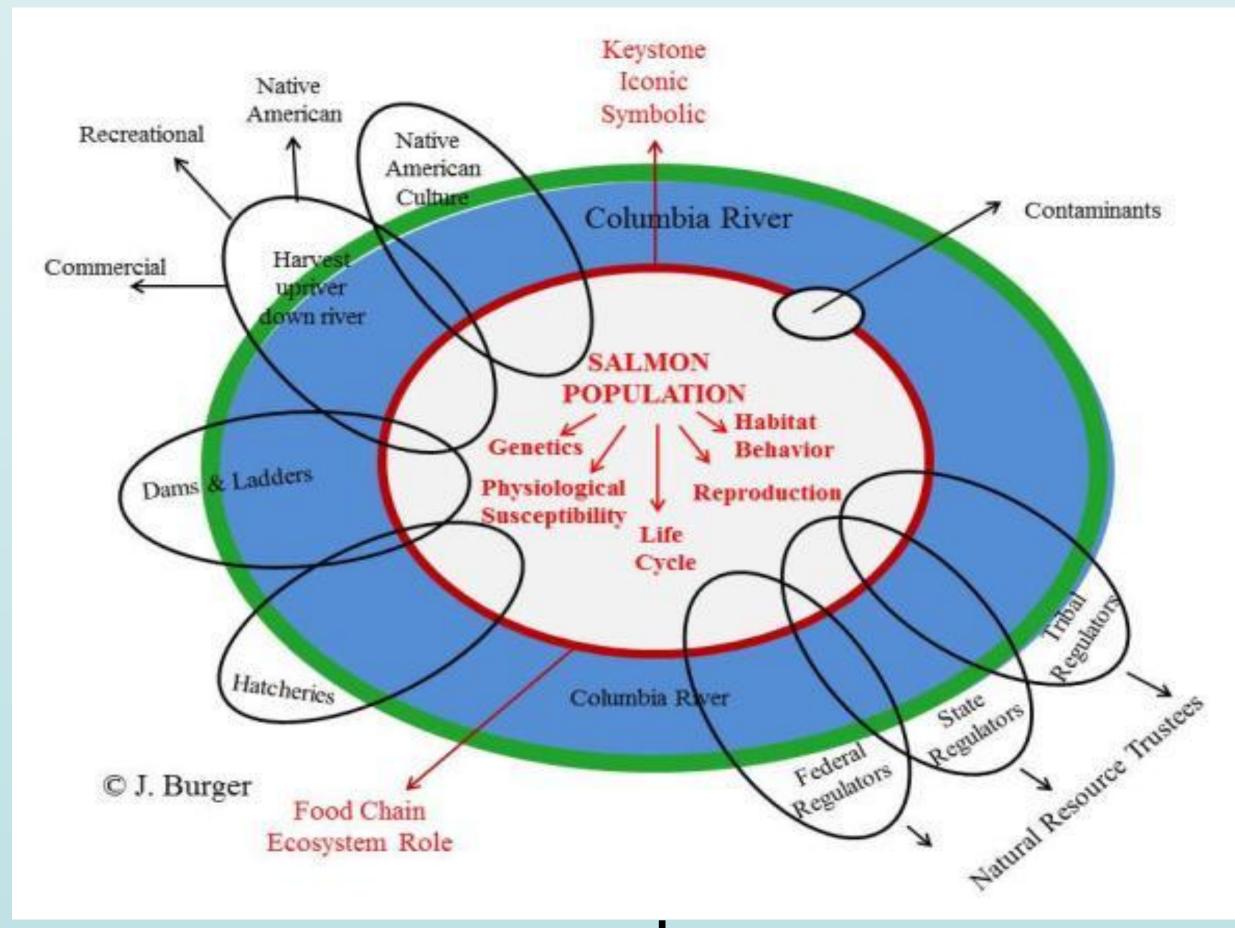


•Joanna Burger\*, Michael Gochfeld \*, Charles Powers \*\*, Kevin Brown \*\*, James Clarke \*\*



EOHSI is jointly sponsored by UMDNJ – Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey.

# **PRESSURE POINTS OR VULNERABILITIES**


Spawning and Fertilization: Females "dig" redds in gravel and deposit eggs, which imbibe water after males fertilize

- Eggs and Alevins: Environmental conditions play a key role in survival of eggs and alevins.
- **Fry/Parr**: When young swim up to water interface and eat, they are vulnerable to contaminants in the food chain.
- **Smolt:** Smolt move down-river to the estuary where they are vulnerable to predators.
- Adults: Adult salmon spend up to seven years foraging in the ocean, find food and avoiding predators.
- Spawning Adults: Adults face two main stressors: making their way upstream to spawning areas and selecting sites for redds
- **Redds** are in contact with pore water and are located to allow suitable water flow to provide sufficient oxygen.

## FACTOR AFFECTING SALMON POPULATIONS **IN THE COLUMBIA RIVER Key Characteristics for Redds and Spawning of Chinook** Salmon in the Columbia River

| Characteristic                     | Optimal values                                                                                                                                                                     | References                                                             |                              |                                                                                                                                                                                                                                                                                                       | CATERO COMPLETENCE                          |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Grain size                         | No fine material, but rather gravel 2.5 to 15.0 cm. Less than 5 % fine grain                                                                                                       | Groves and Chandler<br>1999                                            | <b>RECOVER</b><br>Specie     | <b>AY MEASURES AS MEASUREME</b><br>Method                                                                                                                                                                                                                                                             | ENT ENDPOI<br>Reference                     |
| Water depth                        | 0.3 – 9.5 m                                                                                                                                                                        | Hanrahan et al. 2004<br>2005 (check date); Hatten<br>et al. 2009       | (stage)<br>Chinook-<br>smolt |                                                                                                                                                                                                                                                                                                       | Raymond 1988                                |
| Water velocity                     | Values range from 0.23 to 2.25<br>m/sec, some authors report greater<br>than 1m/sec                                                                                                | Geist et al. 2000;<br>Hanrahan et al. 2004<br>2005. Hatten et al. 2009 | Chinook                      | transportation around dams; ChangeflowEstablish normative flow regimes                                                                                                                                                                                                                                | Dauble et al.                               |
| Stream flow<br>Iuctuations         | Reduced, will not spawn with great fluctuations                                                                                                                                    | Beckman and Larsen<br>2005; Hatten et al. 2009                         | (fall)<br>Salmon             | Maintain correct thermal<br>characteristics                                                                                                                                                                                                                                                           | 2003<br>Goniea et al.<br>2006               |
| Dissolved<br>Dxygen<br>Channel bed | 9mg/L<br>0 to 5 %                                                                                                                                                                  | Geist et al. 2000<br>Geist et al. 2000;                                | Salmon                       | Restoration of habitat for all life<br>stages; Reduce mortality, including<br>harvest; Plan hydropower mitigation                                                                                                                                                                                     | Williams et al.<br>1999                     |
| Slope                              | 0.009 to 0.21 cm/sec                                                                                                                                                               | Hanrahan et al. 2000,<br>2005<br>Arntzen et al. 2001                   | Salmon i<br>estuaries        |                                                                                                                                                                                                                                                                                                       | Bottom et al.<br>2004;Collis et<br>al. 2001 |
| Rain                               | $\begin{array}{c} & Dam & & River \\ Management & Physiognomy \\ nfall & & & \\ Ground water & & & \\ Discharge & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$ | Land<br>Management<br>DOE                                              | Chinook<br>Hanford<br>Reach  | <ul> <li>bird predation</li> <li>in Hold stream flows steady during peak<br/>spawning</li> <li>Recovery actions aimed at harvest,</li> <li>hatcher, hydro and habitat; Restore</li> <li>connectivity; Address entire network,</li> <li>interconnections; Address cultural</li> <li>aspects</li> </ul> | 2009;UCSRB<br>2007;Liss et al<br>2006       |
| © J. Burger                        | Oxygenation<br>Oxygenation<br>g, Depth<br>Gravel/Fine Partic                                                                                                                       | Fry & Parr                                                             | Salmon<br>Hanford<br>Reach   | DOE, Environmental protection<br>Agency (EPA) and others should fill<br>data gaps with respect to effects of<br>chromium on salmon to determine<br>how to increase survival and<br>population levels.                                                                                                 | OHWB 2002<br>Bisson et al<br>2006           |

\*Division of Life Sciences, Rutgers University







# **MEASUREMENT ENDPOINTS**

| Physical      | Snowmelt levels                                         |  |
|---------------|---------------------------------------------------------|--|
|               | Presence of suitable gravel beds/river location         |  |
|               | Grain size of gravel                                    |  |
|               | Water depth and velocity                                |  |
|               | Stream flow fluctuations                                |  |
|               | Dissolved oxygen levels                                 |  |
|               | Chanel bed slope                                        |  |
|               | Hydraulic conductivity                                  |  |
| Biology of    | Population levels of salmon – for each species          |  |
| Salmon        | Different life stages, over years, dams                 |  |
|               | Growth and survival by life stage                       |  |
|               | Time to reach spawning                                  |  |
|               | Location and number of redds/location/river section     |  |
|               | Toxic chemical levels by life stage                     |  |
|               | Change in suitable spawning areas over time             |  |
| Other Biotic  | Predation rates (particularly of smolt in estuaries)    |  |
| Factors       | Food availability                                       |  |
| Contamination | Contaminant levels in different life stages (health of  |  |
|               | salmon and their predators)                             |  |
|               | Contaminant levels in adults (human health,             |  |
|               | particularly for Tribes)                                |  |
|               | Determining contaminants of concern (human and          |  |
|               | eco-receptor health)                                    |  |
| Recovery      | Hatchery Production                                     |  |
| Measures      | Contribution of hatcheries to spawning adult            |  |
|               | population                                              |  |
|               | Dam passage success (including fallback rates)          |  |
|               | Harvest measures                                        |  |
|               | Stream flow data measures                               |  |
| Tribal        | Harvest rates (and relationship to traditional harvest) |  |
| Measures      | Hatchery production                                     |  |
|               | Success of tribal/non-tribal hatcheries in contribution |  |
|               | to spawning adults                                      |  |
|               |                                                         |  |



Joanna Burger burger@dls.rutgers.edu



James Clarke james.h.clarke@vanderbilt.edu

**Acknowledgements and notes** 



Charles W. Powers cwpowers@cresp.org

Kevin Brown kevin.g.brown@vanderbilt.ed



Christian Jeitner jeitner@dls.rutgers.edu



Taryn Pittfield pittfield@dls.rutgers.edu

•Funded by the Department of Energy DE-FG-26-00NT-40938) and Rutgers University. The opinions expressed in this report are those of the authors, and not those of the funding agencies.

• This document reflects thoughtful discussions with: Lisa Bliss, Tribal members, and A. Bunn and W. Johnson (PNNL).