

DECOMMISSIONING OF A FACILITY IN A HISTORICAL REACTOR AT SRS: ACHIEVING BOTH HISTORICAL SIGNIFICANCE PRESERVATION AND EFFECTIVE IN-SITU DECOMMISSIONING - 15275 Mike Griffith, Mary Flora, Christopher L. Bergren, J. Tony Long, John K. Blankenship,

Savannah River Nuclear Solutions, LLC, SRS, Aiken, SC 29808

Karen M. Adams, United States Department of Energy, SRS, Aiken, SC 29808

OBJECTIVES

- **Prevent migration of radionuclides from the** structure, water, and/or sludges to groundwater at concentrations that exceed regulatory standards.
- **Prevent worker exposure to risk thresholds** exceeding 1E-06 for the industrial worker and 1E-**03 for Principal Threat Source Material.**
- Eliminate or control all routes of human exposure to radiological and chemical contamination.
- Prevent animal intruder exposure to radioactive and hazardous contamination.
- **PREVENT ADVERSE IMPACT TO THE HISTORICAL** SIGNIFICANCE OF THE FACILITY/STRUCTURE BY **PRESERVING ITS ORIGINAL CONFIGURATION TO** THE EXTENT PRACTICABLE.

Relocated all irradiated scrap from handrails, hangers, etc. to -9.144 meter level – kept hangers and handrails intact

crap on Hanger Rods – Before Relocation

Before Relocation

After Relocation

HOW WE WORKED WITH HISTORIANS

Worked collaboratively with SC Historical Preservation Office (SHPO) to balance closure and preservation needs:

- **Conducted walkdowns and** conference calls
- **Received SHPO concurrence on** proposed undertaking
- Selected remedy least disruptive to facility and protective of environment and workers
- **Included efforts to photograph** undertaking before/after to support future interpretive displays

Installed evaporator shelter and 10 evaporators external to basin, 2 – 75,700 liter fuel oil tanks, and all hoses, pumps, etc. to evaporate 9.1 million liters of radiologically contaminated water in the Disassembly Basin

Evaporator Supply Water Hoses

After Relocation

HOW WE ADDRESSED OBJECTIVES

- Minimized impact to basin structure
- Left handrails in place and intact
- Left hangers in place
- Installed evaporators in shelter external to basin
- Minimized core drills
- Pulled wood walk-boards intact and reinstalled at completion of grouting
- Installed dry area grout to -10 centimeter level

Evaporate water to -4.88 meter level

Machine Basin at -4.88 meter leve

Evaporators in 710-C Evaporator Building

Pump Floatation Devices in Machine Basin

Machine Basin During Grouting

Machine Basin After Grouting

Installed underwater grout to -4.88 meter level

Completed evaporation of water

Installed dry area grout to -10 centimeter level

HTS Before

HTS After Final Grout Lift

Encasing floatation devices in Machine Basin in grout

Machine Basin After Final Grout Li

Minimized Impact to Basin Structure

Demobilization Activities Remove Evaporator Building, Fuel Oil Tanks & Clean-up Site

Demolish Evaporator Shelter

105-C Site After Final Clean-up

Conclusions:

- ISD did not adversely impact the historical significance
- Both special hybrid grout materials (underwater and dry area) met all requirements
- All compressive strength values far exceeded the 0.34 MPa (50 psi) minimum requirement
- Grout materials resulted in considerable labor, cost, and schedule savings versus conventional materials
- The CO₂ footprint of 105-C was minimized by using a small amount of cement and byproduct material to produce the structural fill materials