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ABSTRACT 
 
Environmental cleanups at complex sites necessarily address many competing demands and 
answer questions such as: 
 
“What is the best way and in a sustainable manner to minimize risk to human health and the environment 

during active restoration efforts and/or long term legacy management, while incorporating parameter 
uncertainty, management considerations, and stakeholder concerns into the process?” 

 
Physics Based Management Optimization (PBMO™ ) provides a means to answer such questions. 
“Physics Based” indicates incorporation of numerically computed groundwater flow and transport 
processes into the analysis. This enables optimal remedy design based on comprehensive mass 
removal/destruction metrics and optimal monitoring strategies. “Management Optimization” 
indicates the ability to incorporate objective functions (e.g., management constraints, 
sustainability considerations) into the evaluation. PBMO™  components have been successfully 
implemented for optimal plume delineation (points of compliance) and monitoring, for optimal 
system design and to optimize existing active treatment systems in the US at multiple DOE, DOD 
and industrial sites since the mid 1990s.   
 
PBMO™ has been recently extended and implemented on multi-core, multi-CPU grid computing 
systems including computational clusters, local area networks and the Cloud.  This extension 
allows for increased flexibility and adaptation of computational resources which can now support 
optimal remedy design and long term management strategies for complex soil and groundwater 
sites. In the PBMO™ -Grid case study, we evaluate flow and transport for a typical optimization 
search for a realistic project against sequential optimization. PBMO™-Grid reduces the CPU time 
required to solve the optimization problem by more than a factor of 14X compared to sequential 
optimization. 
 
PBMO™-Grid can be deployed for deterministic or stochastic optimization and formally 
computes design risk and predicted degree of remedial action success. The numerical models used 
can consist of a single "mega" model (aka a monolith), or a mixture of models and other 
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calculations or expert systems. PBMO™-Grid integrates the computational models in a seamless 
manner, and models run on the Cloud can be implemented in Windows or Linux platforms.  
 
INTRODUCTION 

Remediation Program Managers (RPM) need a simple yet reliable tool that easily incorporates the 
objectives and constraints of the remediation challenges on both the project and programmatic 
levels. Stakeholders need to be able to understand and inspect how the solution is generated. Such 
tools must be flexible, adaptable and extensible to accommodate the site and contaminant variety 
and parameter uncertainty, be user friendly, transparent, able to incorporate a variety of 
management priorities and stakeholder inputs, and produce viable solutions in reasonable time 
frames.  
 
Background 
 
The Department of Energy (DOE) Office of Environmental Management (EM) has projected over 
$300 billion dollars and at least 40 years to remediate contaminated DOE sites (NRC 2014, 
Volume 1, pg 13). Many complex soil and groundwater sites lack adequate characterization; others 
cannot be cleaned up to unrestricted use with available technologies (NRC 2013, pg. 7) and are 
transferred to long term stewardship (forecasted to continue past 2060 with costs of up to $209 
billion dollars). Tightening federal budgets may prolong schedules and further increase 
environmental restoration costs. While the foundational technology to comprehensively optimize 
remediation projects and programs using integrated subject matter expertise (SME), physics-based 
models, observed data, and management constraints exists (Deschaine, 1985, 2001, 2003, 2013, 
2014; ITRC, 2007; Karatzas and Pinder, 1993; Peralta, 2012), computational requirements of 
using comprehensive physically based numerical models - some of which can require days or 
weeks to solve - has placed an upper limit on the complexity of the problems that can be practically 
optimized. Often, computational burden is reduced through the use of approximate models.  But, 
these simplifications can reduce the fidelity of the analysis and may lead to sub-optimal or 
in-accurate solutions. Furthermore, optimal solutions to complex problems benefit from the 
integration of many disciplines including SMEs, data observations along with the physically based 
numerical models (Deschaine, 2014) whilst many techniques rely solely on physically based 
models. Additionally, some decision support analysis tools are available as "software as a service" 
and not as distributed programs; a trend likely to continue.  Migrating the optimization process to 
the Grid / Cloud computational environment provides the ability to utilize complete, unaltered, 
non-simplified models in the process. This capability both maximizes the ability for increased 
accuracy optimization analyses while mitigating the long and impractical calendar time required 
for sequential optimization techniques when run on a single desktop or workstation. 
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Overview of PBMO™:  

Strategic planning of environmental responses requires optimal remedial design tools that not only 
embrace the complex constraints associated with these systems but that can support decision 
making within a framework of varying levels of uncertainty in all aspects of cradle to grave 
environmental response planning and execution. The aspect of PBMO™ discussed in this paper is 
focused on the optimal groundwater remediation design module. It uses physics-based models1 
with cost, certainty and management objective functions to provide estimates of remedial system 
design performance. Physics-based models are used because they are: 
 
• Comprehensive: Physics-based models provide the best representation of subsurface flow 

and transport system and the processes affecting contaminant migration. And in doing so, 
becomes more defensible and better foundation for making predictive simulations. 

 
• Efficient and Effective: Physics-based models are better at capturing the performance of 

candidate remediation solutions than are over-simplified, lumped parameter, or ad hoc 
models. This increased accuracy yields a solution that makes better use of scarce financial 
resources 

 
• Flexible: Physics-based models readily incorporate planning scenarios that are outside 

historical observations. Models built on regression, interpolation, or extrapolation methods 
simply cannot capture these new conditions.  

 
PBMO™ analysis includes examining uncertainty range for both the time and cost of remedial 
projects, and optimization algorithms are deployed to minimize the uncertainty 2  in the 
remediation project performance, resulting in the optimal design. Cost and schedule uncertainty is 
captured from the subject matter experts. Geologic uncertainty is captured by tools such as 
GSLIB 3  and SmartGEO 4 . PBMO™ provides functionality to manually explore remedial 
alternatives (technologies and designs), or conversely automatically optimizes a single or 
comprehensive set of remedial alternatives using single or multiple management periods. It 
includes a manual/automated mode in which the user is allowed to force certain alternatives or 
configurations to be mandated (or precluded). The automatic optimizers solve for the best solution 
while honoring these requirements. Manually exploring alternatives offers the user full control 
over the solution and facilitates learning system behavior. In the automated mode, the tool selects 
the best arrangement of alternatives. These alternatives are assembled and assessed following 
standard EPA protocols and using specific models that provide optimal knowledge of the source 
                                                            
1 Such as MODFLOW/MT3DMS, MODFLOW-Surfact, HEC-RAS.  
2 For optimal decision making under uncertain conditions, cf Deschaine, et. al, 2001.  
3 http://www.gslib.com/ 
4 SmartGeo performs the generation of heterogeneous random fields conditioned to measurements, in particular 
hydraulic measurements, by the inversion of such measurements in a Bayesian framework. 
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location, its strength, the resultant plumes and changes over time in response to natural attenuation 
or active remediation. The optimally selected remedy represents the solution that meets all the 
project criteria, including uncertainty, at the least cost (Deschaine, 2003).  
 
METHODS 

HGL’s Physics-Based Modelling and Optimization™ or “PBMO™ Medallion” Tool Box 
integrates physics-based models with a customized and extended implementation of the Lipschitz 
Global Optimization (LGO(c)) Solver Suite of global and nonlinear optimization methods to 
provide decision support for environmental remediation (Pinter, 2002). Because PBMO™ ’s 
design is modular, it facilitates linking the appropriate physics-based simulator with the best 
global optimization algorithm(s) for each individual problem while allowing for parallel 
processing in Grid/Cloud deployment environments. This configuration of the PBMO™  
architecture develops a credible optimal strategy using the appropriate modelling and optimization 
tools whilst solving industrial grade problems in practical time frames. 
 

 
 

Figure 1: PBMO™ : Optimization Process Flow Diagram 

 
Figure 1 shows how PBMO™ Medallion’s modular design permits the linkage of the best global 
optimization algorithms with the most appropriate physics-based simulators to develop an optimal 
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strategy in a sequential, iterative process. Optimizers available in the top half of the PBMO™  
Medallion include LGO, HGL Opt™, Outer Approximation (Deschaine and Pintér, 2003), 
Kalman Filtering (Deschaine, 2003), linear and sequential linear programming, and various 
heuristic methodologies including genetic algorithms, Tabu Search, and Simulated Annealing 
(Deschaine, 2014). These optimizers are then linked with physics-based, calibrated/data fused 
models for fate and transport — MODFLOW-SURFACT™, MODHMS®, and the HEC family of 
codes — as well as machine learning (e.g., response function and equation writers). In the serial 
version of PBMO™, the arrows C and D represent information flows for a single candidate 
solution. In the parallel version, the arrows C and D represent asynchronous flows of multiple 
candidate solutions (C) and associated performances (D). The number of candidate solutions in a 
set is a function of the number of processing nodes5 activated in the Grid / Cloud computing 
environment (Sterling, 1999). 
 
Optimization Approaches and Tools 
 
The general process of applying PBMO™  to a site problem involves defining a scope of work 
and deliverable(s), setting up the project objectives and constraints, selecting a suitable model to 
predict future scenarios, solving and interpreting results, and achieving stakeholder acceptance. 
Because the core physical equations and numerical models of PBMO™  are applicable in the 
water resources, mining and environmental remediation fields, a generalized approach to solving 
each challenge is possible, with only some customization required to adapt per field of interest. 

Once a team-acceptable model is developed, the objective and constraints are defined. Then some 
level of the feasibility (or infeasibility) is assessed, and a candidate solution is developed. The 
assessment of developing an optimal solution is discussed in the literature (Deschaine, et. al, 
2013).  An optimal solution (or a set of such solutions) is generated by linking the model(s) with 
an optimization algorithm(s). Optimization algorithms can be either deterministic or stochastic, 
can solve for single- or multi-objective functions and the model equations and constraints can be 
linear, mildly nonlinear, or highly nonlinear. Furthermore, the characteristic of the model state 
equations can transition between linear and nonlinear, which can complicate the optimization 
process. Solving these situations is discussed and demonstrated in (Deschaine, et. al, 2013, 
Deschaine, 2014). 

In industrial decision making, the objective is to determine how to allocate limited resources 
optimally, in order to achieve a certain objective under the constraints.  Such decision problems 
can be formally modeled by corresponding constrained optimization (mathematical programming 
[MP]) models.  

                                                            
5 A Cloud deployment can activate 100's or 1000's of computational nodes.  
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While the decision model formulation is evidently always problem specific, for discussion 
purposes we provide an overview of the constrained optimization problem. The objective is to 
minimize the total cost of an environmental or industrial management program expressed by the 
net present value of all related (construction, treatment and/or operational) cost components. The 
decision is subject to the following requirements: the solution has to meet all considered physical, 
engineering, environmental, and stakeholder constraints. 

The goal of this section is to summarize the state-of-the art of algorithms for solving global 
optimization problems and selecting a set of algorithms to use to support making optimized 
decisions. Reflecting the realities of industrial applications, the present exposition will be focused 
on global nonlinear optimization.  

The general MP model is defined by the following ingredients: 
x decision vector, an element of the real n-space Rn; 
f(x)  continuous objective function, f: Rn  R, (R=R1);    
D non-empty set of admissible decisions, a subset of Rn. 

More specifically, the set D is defined by:   
l, u  explicit, finite n-vector bounds of x (a “box”) in Rn; 
g(x) m-vector of additional continuous constraint functions, g: Rn Rm 

Applying these notations, the (continuous) MP model is stated as follows: we want to 
minimize the objective function f(x) under the assumption that x belongs to the feasible set D. 
Applying standard notation, this is concisely expressed as 
 min f(x) x ∈D, D: = {l ≤ x ≤ u, g(x) ≤0} ⊂ Rn.  (1) 
In the definition of set D, all vector inequalities are interpreted component-wise (since l, x, and u,  
l < u are n-vectors), and the zero in the relation g(x) ≤ 0 denotes an m-vector. The components of x 
are denoted by x1, x2,…,xn; the components of the vector function g are functions g1, g2,…,gm. 

The model formulation is generalized as follows: 

• Maximization problems can be deduced to the general form by using –f as the objective 
function.  

• Similarly, = and ≥ constraint relations and/or explicit lower and upper bounds regarding 
the constraint function values can be simply deduced to the model form (1).  

• If the set of additional constraint functions g is empty (m=0), the formulation is a 
box-constrained optimization model.  
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Also, combinatorial optimization problems with discrete variables and thus mixed 
integer-continuous optimization problems can be, at least in a formal sense, directly transformed 
into continuous GO models (Pintér, 2002). 

Next, we introduce the key concepts of local vs. global optimality. The point xl*∈D is a local 
solution of (1) if f (xl*) ≤ f(x) holds for all points x∈D located within a certain “neighborhood” of 
xl*. In the real n-vector space, the concept of a neighborhood can be defined by some norm 
function. (For concreteness, we can think of the standard Euclidean norm.) The point x*∈D is a 
global solution of (1) if f(x*) ≤ f(x) holds for all points x∈D. The entire set of global solutions will 
be denoted by X*. The basic analytical assumptions stated above guarantee that the optimal 
solution set X* of the MP model is non-empty. 6 

The above technical remarks imply that (1) covers a general class of optimization models and 
useful for general industrial optimization problems discussed in this paper. Consequently, this 
class includes as provided in the examples, difficult model instances for which traditional (local) 
optimization methods will typically fail. Local scope search methods, as a rule, find only local 
solutions depending on the starting point (“initial solution guess”) of the search algorithm. A 
significant class of nonlinear models for which local scope optimization suffices is the 
minimization of a convex function over a convex set. For completeness, we include definitions of 
convexity. The set D ⊂ Rn is convex if for each pair of points from D, the entire line segment 
connecting these points also belongs to D. A function f is convex over D if its level sets Dc: = 
{x∈D: f(x) ≤c} are convex, for all real values of c. If the decision model does not meet (essentially) 
these convexity requirements, then in general solving the model calls for global scope algorithms. 

HGL_Opt™ is the core optimization solver for both the serial and Grid/Cloud deployment. It is a 
suite of global and local nonlinear optimization methods within an integrating framework. The 
core solvers are based on a non-trivially extended implementation of LGO(C), Linear and 
Sequential Programming (LP/SLP) and the outer approximation algorithms. These tools work 
synergistically to provide a reliable numerical estimate of globally optimal or best solution that can 
be found in the time allocated to optimization. The solvers can handle at least up to 100 binary 
(yes/no) decision variables, 5,000 continuous variables, and 2,000 general constraints. Built-in 
solvers handle arbitrary optimization problems including linear/nonlinear and convex/nonconvex 
objective function and the constraint sets, and mixed continuous / discrete decision variables. The 
core global optimizer employs a mild assumption of Lipschitz continuity, which allows for an 
efficient and robust search for a global optimal value through a systematic partitioning and 

                                                            
6 This key result directly follows by the classical theorem of Weierstrass that establishes the existence of the 
minimizing point set of a continuous function over a non-empty, closed and bounded set. 
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exploration of the entire constraint set using the branch-and-bound approach or an extended 
implementation of our globally adaptive [depth and breadth] iterative search.7    

PBMO™ currently includes the following specific objective functions {f(x)} PBMO™ for 
optimizing pump and treat systems: 

• Minimize remediation cost 
• Minimize remediation timeframe 
• Maximize contaminant mass removal 
• Minimize Green House Gas (GHG) emissions 
• User defined (custom objective function; max or min) 

Representative constraints { l, u, g(x) } for pump and treat remedies include: 

• Cleanup Constraint 
• Cleanup Time Constraint 
• Maximum Number of New Wells Constraint 
• Total Pumping Rate Constraint 
• Individual Pumping Rate Constraint 
• Contaminant Extent Constraint 
• Concentration Constraint by Location 
• Head Constraint by Location 
• Head Constraint by Area Constraint 
• Gradient Constraint by Location 
• Pumping-Recharge Balance Constraint 
• Well Group Pumping Rate Constraint 
• Particle Containment Zone Constraint 
• Objective Function Value Constraint 
• Maximum Annual Funding Constraint 
• Minimum Annual Funding Constraint 
• Maximum Total Funding Constraint 
• Minimum Total Funding Constraint 
• Minimum Annual Mass Removal Constraint 
• Maximum Annual Mass Removal Constraint 
• Minimum Annual GHG Generation Constraint 
• Maximum Annual GHG Generation Constraint 

                                                            
7 The partitioning allows the algorithm be evaluated using parallel code structures.  
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One can readily see how the above formulation is directly applicable and extensible to a wide 
variety of issues encountered in environmental restoration challenges where optimal design is 
desired.  

DISCUSSION 

HGL_Opt™ and its precursors have been deployed at some of the most challenging sites from the 
USDOE, USDOD, USEPA as well as private industry that have ever been analyzed. It has 
received numerous awards (including a U.S. Vice Presidential Hammer Award) for the application 
at the USDOE- Savannah River Site where documented cost savings exceeded $20M (Coffield, et. 
al, 1998). A representative example of the tool’s applicability and acceptability is the work 
conducted at the DOE-Pantex Plant, which is described below.  

Optimization Application DOE-Pantex Plant 

The DOE Pantex Plant in Amarillo, TX provides an example of how comprehensive optimization 
strategies have been embraced by a program team and have delivered both good will among 
stakeholders and invaluable overall program savings.  

Site Description:  

The Pantex Plant, located near Amarillo, TX, USA, is a nuclear material plant covering 9,100 
acres. The Plant was established in 1942 to build conventional munitions and high-explosives 
compounds in support of WWII. It is currently used for the development, testing, and fabrication 
of high explosive components; nuclear weapons assembly and disassembly; interim storage of 
plutonium and weapon components; and component surveillance. Historical waste practices at the 
facility have resulted in 140 known SWMUs containing metals; radionuclides, inorganics (e.g., 
perchlorate), various explosives such as RDX, VOCs, and semi-volatile compounds. Plant 
discharges have created a large mound (16BG) of impacted perched groundwater at a depth of 
250-300 feet. The impacted groundwater lies about 150 feet above Ogallala aquifer, which is the 
principal source of groundwater for the City of Amarillo and agriculture in the region.  

Work Objectives:  

The work objectives were defined as follows: (1) Develop a stakeholder-acceptable project 
approach; (2) Find and define the TCE and RDX plumes and design a risk-acceptable remedial 
action; (3) Optimize long-term monitoring to provide stakeholders assurances that impacts are 
monitored properly; and (4) Develop a contingent remedial design should conditions change (e.g., 
potential migration of contaminants from the perched to the regional aquifer) to quickly mitigate 
impacts to the Ogallala Aquifer from future impacts, should they occur. Significant numerical 
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computation challenges were experienced during this effort. The regional transient, multi-phase 
subsurface flow and transport models of the vadose and saturated zone required up to 23 days per 
simulation.  
 
Pantex Stakeholder Involvement 

Although PBMO™’s integrated modeling and modeling technology for environmental restoration 
is highly sophisticated, transparency is built into every stage of an analysis/response action to 
ensure interested parties are kept apprised of site investigation processes and progress, and 
therefore, are fully prepared to critically review and implement the best, all-round remedies. At the 
Pantex Plant, this approach helped transform an adversarial situation into a highly productive 
partnership between stakeholders and the government.  

In 1999, a Pantex Plant Technical Advisory Group (TAG) was convened comprised of plant 
personnel; representatives from universities, national laboratories, government centers of 
excellence, and state and federal regulatory authorities; industrial experts (including Dr. 
Deschaine); and community stakeholders. As the TAG team conducted its analysis of the situation, 
it requested field tests and obtained guidance from leading SMEs on the physics-based simulation 
and optimization tools available to simulate the subsurface processes operating within Plant’s 
complex geological, hydrological, biological, and chemical subsurface environmental systems. 
Pantex stakeholders were kept fully apprised of what the TAG had learned, what models and tools 
were being recommended for selection, and why. Stakeholder involvement was facilitated through 
regular technical meetings and training courses, so once the work progressed to developing 
simulation models and optimization systems, Pantex stakeholders understood − and therefore 
trusted − the analysis and the visualizations (and 3-D physical model) used to translate the 
complex models and physics data into physical processes and alternative, simulated solutions. 
Most importantly, the Pantex TAG was prepared to reach an informed decision about the path 
forward and unanimously endorsed the simulation/optimization system. The TAG proposed to 
resolve the challenges at the Plant and to continue to stay involved to review the work as it was 
implemented over a 10-year period (USEPA, 2010). A 24-node (50GHz) grid on a local area 
network was constructed to conduct the analysis.   
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RESULTS 

The key value of these analyses was that they reduced uncertainty and gained unanimous 
stakeholder acceptance without conducting unnecessary work. This meant that plans could be, and 
have been, implemented efficiently and effectively (USEPA, 2010). This effort, though very 
successful, provided a clear recognition of the need for a more computationally flexible platform 
to promote use at other complex DOE locations.   
 
Limitations of Computational Approach at Pantex Plant 
 
While the successful application of the simulation/optimization approach on a computational grid 
at the DOE-Pantex Plant was recognized with a DOE Scientific Award, several factors were 
identified in the implementation that limited system performance.  
 

• The scalability of the computational network was limited to locally available resources (24 
nodes), limiting the amount of computation performed per calendar day.  

• Node availability varied from competing (internal and external) computing resource 
demands, limiting the rate of daily computation performed, resulting in uncertainties when 
jobs would be completed.  

• Significant project-specific coding was required by specialized personal, resulting in high 
software legacy and maintenance costs, this reduced the portability of the approach making 
it more difficult and costly to apply the successful solution methodology at other sites. 

 
Migration of PBMO™ to Cloud Computing 
 
Optimization algorithms, including PBMO™, have been designed to produce the most efficient 
sequence of candidate solutions. In Figure 1, PBMO™  generates a candidate solution (top half), 
evaluates the solution in the numerical model (lower half), computes the objective function value 
and evaluates compliance of the constraints. This approach is very practicable on a single 
computer for moderately complex problems (Deschaine, 2013) with short  model execution times 
or few decision variables, calendar times required to compute and solve an optimization problem 
can be on the order of months when model run times exceed several hours or decision variables 
and constraints are in the 100s or 1000s; this is an unacceptable duration for many practical 
applications. Additionally, many of the numerical flow and transport model codes that are 
candidates for use in optimization analysis do not employ parallel solvers, so reducing run-times of 
these models through parallelization often is not a viable option. Hence, it is more feasible, 
practical and viable to parallelize the PBMO™  optimization algorithm than it is to write parallel 
solvers for each numerical model. Cloud computing provides the platform that addresses the items 
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needing improvement: 
 

• System Scalability: The number of CPU's available has no practical limit. The Cloud 
platform is fast, flexible and agile providing on demand, extensible performance. 8 

• Node Availability: Computational resources, once allocated, are dedicated for the process.  
• Generality: Cloud vendors and independent researchers have developed and openly share 

1000s of tools and techniques to facilitate migration of applications to Cloud computing 
environments.  

 
In addition, migration of PBMO™ to the Cloud9 offers the following benefits: 
 

• Multiple Operating System Option: Available operating systems include various 
versions of both Microsoft Windows and Linux. This allows seamless use for calculation 
of a wide variety of different models - written for different platforms - to be used in the 
optimization –no portage required.  

• Security: Multiple levels of security are available, allowing protection of proprietary 
models and data.  

• Global Database Availability: Onboard database availability, combined with global 
internet access and specified levels of security allows collaborative optimization to occur 
with multiple partners, and multiple data streams (Deschaine, et. al 2000). Utilizing the 
database allows participant's to provide just the analysis results - as opposed to the entire 
decision support tool - thereby protecting intellectual property.  

• Hybrid Implementation: PBMO™ is implemented as a hybrid Cloud system. This hybrid 
Cloud system promotes an effective blend of usability and practicality.  

• Parallel Implementation: PBMO™ now generates 100s or 1000s of candidate solution 
for potential evaluation in contrast to one at a time. Distributing batches of candidate 
solutions for evaluation makes it easier to explore unsearched regions and exploit searches 
near promising solutions (Barto, 1998). Participants can also submit candidate solution 
using various optimization methods, such as SME, observed operational data or even from 
other optimization algorithms, for inclusion (Deschaine, 2014).  

 

  

                                                            
8 For example, one has the freedom to start with one or several CPU's, then spin up 1000s as needed to compress 
the calendar time needed to generate an optimal solution. A 1,000 node system (assuming 2Ghz CPUs has 2,000 
Ghz capability, 40 times the power of the computational grid used in the Pantex application. 
9 Refers to the Amazon Cloud system EC2 (http://aws.amazon.com/ec2/)  
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PBMO™ Grid/Cloud Computing Test Case 

PBMO™ was applied on a test example optimizing an existing pump and treat system. The 
optimization problem consisted of 180 decision variables (e.g. extraction rates and pumping 
periods), hundreds of constraints (e.g., maximum pumping rates, maximal plume geometry 
extent). The numerical model required 30 minutes per candidate solution evaluation. PBMO™  
was implemented using 14 nodes, and produced a solution better than the previously reported 
solution in less than one week of calendar time10. A serial implementation is expected to take 
months before producing a similar result rendering the serial approach as non-viable.   
 
CONCLUSIONS 

A formal comprehensive environmental remedial design optimization system that is Grid and 
Cloud enabled has been developed and tested. It is important to note that this new capability is 
radically transformative, and industry can now enjoy the benefits of applying formal optimization 
to large and complex problems heretofore unviable by current means. Also, in this 
implementation, “optimization” does not singularly refer to cost minimization but rather to the 
effective and efficient balance of cost, performance, risk, management — as well as societal 
priorities and uncertainty. The tool integrates all of these elements into a single-decision 
framework and provides a consistent approach for designing optimal systems that are tractable, 
traceable, and defensible. Because the system is modular and scalable, it can be applied either as 
individual components or in total. Modular deployments of PBMO™ ’s components have already 
produced savings in excess of $20M at DOE-Savannah River Site (Aiken, SC USA)RS where 
project duration has been reduced to half of what was originally expected without sacrifice of 
safety, human health, or environmental standards. The methods used in the tool have been 
accepted by state and federal agencies (U.S. DOE, U.S. DOD and USEPA) beginning as early as 
1985. Now in its 30th year of development and deployment with recent enhancements leveraging 
Cloud computing, the optimization tool is increasingly being applied to an ever-wider range of 
highly complex environmental challenges; those complex site challenges that require strategic and 
expert integration of subject matter expertise, value engineering, simulation, information fusion, 
and optimization technologies. PBMO™ implemented on the cloud, enables better representation 
of complex sites during optimization efforts, permitting targeted data acquisition where new data 
can reduce system/decision uncertainty the most; provide a better foundation for adaptive site 
management at complex soil and groundwater sites. The comprehensive scope of the PBMO™ 
formulation includes green remediation and sustainability considerations (triple bottom line of 
environment, economics and social) aspects of complex site restoration. The fact that management 

                                                            
10 Greater acceleration of optimal solution generation is enabled by activating additional Cloud computation 
nodes.  



WM2015 Conference, March 15 – 19, 2015, Phoenix, Arizona, USA 

 

14 

 

and stakeholder considerations or formally incorporated provides assurance that solutions 
generated have a high level of acceptability.  
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