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ABSTRACT 
 
The effective elastic coefficients on the macroscale for heterogeneous media are calculated by solving the 
micro-cell elastostatic problem numerically. The cell problem is obtained by applying the homogenization 
theory to periodic composite media. Two different types of inclusion geometry are considered: (i) a circle 
and (ii) a circle with longitudinal ribs of small rectangular cross-section. The deformation is caused by 
traction force distributed along the interface between the two regions of different elastic moduli. The 
displacements are calculated by using ABAQUS and are used to determine the effective elastic 
coefficients on the macroscale. It is shown that the elastic coefficients are larger for (ii) than (i) due to the 
ribs thereby enhancing the elastic rigidity.  
 
INTRODUCTION 
 
The strength of structures is usually enhanced by inserted components of higher strength. Concrete 
structures are always enhanced by steel reinforcement bars embedded in the region where tensile force is 
applied. For safe operation of underground nuclear waste repository it is important to secure large enough 
elastic properties for reliable functioning of the facility. Therefore it is essential to know the elastic 
characteristics of composite media which in general have inclusions of higher rigidity. 
 
In this study, micro-cell geometries with inclusions of the shape (i) circular cross-section, and (ii) circular 
cross-section with ribs at the top and bottom of the cross-section are considered: It is assumed that these 
inclusions are distributed periodically in space in the solid background medium.  
 
The theoretical approach is based on the homogenization theory which systematically combines the 
processes on the microscale(of order ) and deduces the governing equations and the effective 
coefficients on the macroscale(of order L) [1]. It is assumed that the two spatial scales are disparate so 
that  << L. Under two basic assumptions, (i) the periodicity of the medium structure on the microscale 
with periodic length l and (ii) the periodicity of all variables and material properties with the same 
periodic length l. The periodicity assumption is not restrictive because the distributions and arrangements 
over the periodic length are quite arbitrary and pretty much all conceivable distribution patterns are 
possible. Only the efforts to carry out the elastostatic analysis will be different depending on the 
complexity of the distribution inside the unit micro-cell.  
 
The theoretical developments start from the basic governing laws on the microscale (the equilibrium 
equations and constitutive laws). With multiple-scale perturbation expansion the governing laws on the 
macroscale are deduced with no recourse to empirical or experimental assumptions. Throughout the 
process certain microscale boundary-value problems in a unit cell are defined whose solutions are used in 
the calculation of the effective macroscale elastic coefficients. If the inclusion geometry is specified, the 
solution to the unit cell problem is found by numerical method. The software package ABAQUS is 
specifically used to carry out solving the elastostatic boundary-value problems defined on the microscale.  
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It is shown that the effective macroscale elastic coefficients increase with the increase of the volumetric 
portion of the stronger phase. Also the increase of the elastic coefficients is larger for transverse ones than 
the longitudinal ones for inclusion geometry with ribs attached to it due to the latching effect of the ribs.  
 
It is noted that the computational approach adopted in this study starts from the basic governing relations 
on the microscale without making empirical or phenomenological assumptions. Then the multiple-scale 
analysis is used to deduce the effective relations (governing equations and constitutive laws) on the 
microscale.  

 
THE GOVERNING RELATIONS ON THE MICROSCALE 
 
The composite medium is assumed to be composed of a solid region(Ω1) and another solid region(Ω2) 
that fill the unit cell on the microscale. Each region is assumed to be connected throughout the composite 
medium. Solid deformation takes palce by macroscopically imposed strain over the medium. 
 
The basic governing equations in the solid domains (Ω1 and Ω2) and the boundary conditions on the 
interface(Γ ) are described which is given in the process of multiple-scale expansion.  
In each region, the quasi-static equilibrium equation with Hooke’s law must be satisfied. 
 
On the boundary Γ  between the two regions, the continuity of the displacement, and the continuity of 
stress must be satisfied.  
In summary, the equilibrium equation and the Hooke’s law are written as 

  (Eq. 1) 

   (Eq. 2) 

where  and  are the solid stress and strain in  and  is the elastic coefficient tensor 
of rank 4. Summation is assumed for repeated indices (summation convention). The number in the 
brackets in left upper corner denotes the regions. 

The boundary conditions on Γ are 

         (Eq. 3) 

        (Eq. 4) 
where  is the unit normal vector on Γ  pointing from Ω1 to Ω2.  
The governing equations and the boundary conditions are then normalized and the multiple-scale 
expansion is carried out.  

 

MULTIPLE SCALE ANALYSIS 
 
Recognizing the scale disparity in the process of elastic deformation, two distinct length scales are 
introduced: the microscale length (the fast scale which is equivalent to the representative elementary 
volume in the traditional treatment of the process) and the macroscale length (the scale over which the 
processes of interest take place from the viewpoint of reservoir engineering and management). 
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The variables are expanded as perturbation series in the following small parameter  

        (Eq. 5) 
in which  is the microscale length and  is the macroscale length. Upon expansion of the governing 
equations and boundary conditions, the microscale boundary-value problems are investigated according to 
the respective order of  and the effective macroscale governing equations and coefficients are derived.  
 
In the process of the multiple scale analysis, two canonical micro-cell boundary-value problems are 
defined whose solutions are used in the calculation of the effective medium properties(effective 
macroscale coefficients) by averaging over the micro-cell volume[2]. 
 
THE MICRO-CELL BOUNDARY-VALUE PROBLEMS 
 
If the solid displaement is expanded in a perturbation series, 

  (Eq. 6) 

the leading order term  is independent of the microscale and the correction terms are expressed as  

 (Eq. 7) 

where  is the unit-cell average of the left-hand side. The unit-cell average is defined as 

         (Eq. 8) 
 

The unknown functions   are the displacements in i-th direction due to 

macroscale unit strain  in . They are the solutions of the following boundary-value 
problems: 

     (Eq. 9a) 

     (Eq. 9b) 

         (Eq. 9c) 

    (Eq. 9d) 

        (Eq. 9e) 

 
Equations (Eq. 9a) and (Eq. 9b) are the equilibrium equations in  and . Equations (Eq. 9c) and 
(Eq. 9d) are the continuity relations for the displacement and the traction on the interface. Equations (Eq. 
9e) is imposed for the uniqueness of the solutions. 
 
The effective elastic coefficients on the macrosclae are given as 

   (Eq. 10) 
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It is composed of two part : the volume weighted average of the elastic coefficients and the stress due to 

.  
 
THE MICROCELL GEOMETRY, COMPUTATIONAL DOMAIN, AND MESH 
 
Two types of microcell geometry are considered as shown in Fig. 1 in which  in the shape of circular 
cross-section (Fig. 1(a) and (b)) and  in the shape of circular cross-section with small rectangular ribs 
at the top and bottom are shown in (c) and (d). The cell shown in Fig. 1(a) has dimensionless size of unity 
in both horizontal and vertical directions. The radius of the circular cross-section is chosen to be 0.1, 
0.125 and 0.16. 
   

          (a)  (b) (c)  (d) 
 

Fig.1. The microcell geometry: (a) Front view, (b)  in the shape of circular cross-section, (c) Front 
view of circular cross-section with ribs, (d)  in the shape of circular cross-section with small 
rectangular ribs at the top and bottom. 
 
Due to the symmetry of the traction force distribution about the horizontal and vertical centerlines on Γ , 
the computaional domain is reduced to one quarter (the first quadrant) of Fig. 1(a). The computation has 
been carried out in the reduced domain by using elastic analysis part of ABAQUS with quadratic 3D 
finite elements so that there are 20 nodes in each element. The computational domain is the specified as 
0<x<0.5, 0<y<0.5, 0<z<1.0.  
 
Three progressively finer meshes are shown in Fig. 2 for the case of inclusion with circular cross-section. 
Since the medium response is expected to vary sharply at and near the interface where the traction force is 
applied, much finer meshes were used in that region. 

 

 (a)  (b)  (c) 
Fig. 2. Three different meshes: (a) Coarse, (b) Fine, and (c) Finer. 
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PROPERTIES OF THE SOLID MATERIALS IN  AND . 

The solid materials in  and  are assumed to be isotropic. The elastic coefficient tensor is 
then[3] 

          (Eq. 11) 

where  and  are the Lame constants in  and  is the Kronecker delta.  
They are normalized by  as follows: 

    (Eq. 12) 
in which symbols with overhead symbol * are dimensionless.  

The physical values are chosen as follows: 
 =2x1011 Pa, =0.8; =2x1010 Pa, =0.21   (Eq. 13) 

 
They are typical of steel and concrete. Hence the micro-cell can be regarded as realization of concrete 
material enhanced by steel bars either without or with ribs. The normalized elastic coefficients then 
become 

=1.3461, =0.5769, =0.7692 

=0.11251,  =0.0299,  =0.0826 (Eq. 14) 

 
 

 
NUMERICAL RESULTS AND DISCUSSION 
 
In this study, the case ab=xx in (Eq. 10) only is discussed, i.e., the macroscale strain is a normal 
one in the x-direction. The numerical results obtained from the finest mesh are shown. 
 

(1) Circular Inclusion 

The displacements and  are shown in Fig. 3 (a) and (b). The strains , and 

 are shown in Fig. 4 (a) - (c). Also the stresses , , and  are 
shown in Fig. 5 (a) - (c). In each of the plots, for detailed display of the variables, the two regions are 
enlarged nea the interface and are shown separately. 
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(a) 

(b) 

Fig. 3. The displacements (a) and (b) . 
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(a) 
 
 

(b) 
 
 

(c) 
 
 

Fig. 4. The strains (a) , (b) , and (c) . 
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(a) 
 

(b) 
 

(c) 
 

Fig. 5. The stresses (a) , (b) , and (c) . 
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(2) Circular Inclusion With Ribs 

As in the case without ribs, the displacements and  are shown in Fig. 6 (a) and (b). The 

strains , and  are shown in Fig. 7 (a) - (c). Also the stresses , 
, and  are shown in Fig. 8 (a) - (c). 

 
 
(a) 

 
(b) 

 
Fig. 6. The displacements (a) and (b) for circular bar with ribs.. 
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(a) 
 

 
 
(b) 

 
 
 
(c) 
 

 
 

Fig. 7. The strains (a) , (b) , and (c)  for circular bar with ribs. 
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(a) 

 
 
(b) 

 
 
(c) 
 

 
 
 

Fig. 8. The stresses (a) , (b) , and (c)  for circular bar with ribs. 
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NUMERICAL RESULTS AND DISCUSSION ON ELASTIC COEFFICIENTS  
 
From the calculations with the finest meshes in the previous section and (Eq. 11), the effective 
elastic coefficients on the macroscale are summarized in Table 1 for circular inclusion and in 
Table 2 for circular inclusion with ribs. In the tables, R is the radius of the inclusion, and  and 

 are the volume fractions of each region.  
 

(1) Circular Inclusion 
 

Table 1. The effective elastic coefficients for circular inclusion 
 

 
R 

 

 

 

 

 

 

 

 

0.1 0.0314 0.9686 0.1673 0.0451 
0.125 0.0491 0.9509 0.2301 0.0577 
0.16 0.0804 0.9196 0.2707 0.0789 

 
 As the size of  increases, i.e., as R increases, the longitudinal and transverse elastic 
coefficients increase. This is due to the contrast of E in  and . Recall from (Eq. 13) that  

=2x1011 Pa and =2x1010 Pa. Therefore if R increases, the elastic modulus increases.  
 

 
(2) Circular Inclusion With Ribs 

 
Table 2. The effective elastic coefficients for circular inclusion with ribs 

 
 

R 

 

 

 

 

 

 

 

 

0.1 0.0299 0.9701 0.1789 0.0523 
0.125 0.0471 0.9529 0.2522 0.0644 
0.16 0.0769 0.9231 0.2968 0.0921 

 
In this case, the radius of the inclusion along the y-direction, that is the rib is included in measuring the 
radius. Hence the area of  is a little bit reduced whreas as , the area of is increased by the same 
amount as compared with Case (1) above.  
 
The elastic coefficients also increase as R increases in both longitudinal and transverse ones. It is noted 
that the increases is more pronounced for the transverse one than the longitudinal one. 
 
CONCLUSIONS 
 
From the calculations of the effective elastic coefficients for a composite material with inclusions of a 
circular shape and another circular shape with ribs the following conclusions are drawn. 
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1. The elastic coefficients increase with increasing volumetric portion of stronger phase which is 
intuitively obvious.  

2. With ribs of quite small size attached to the surface of the inclusion, the elastic coefficients are 
increased thereby enhancing the composite material. 

3. The rate of increase in the elastic coefficient for inclusions with ribs is larger for the transverse one 
than the longitudinal one. It is because of the latching effect of the ribs 

4. Enhancement of composite materials with ribs can be effectively used in the design of underground 
nuclear waste storage facility for which utmost level of reliability and confidence are required. 

5. It is worthwhile applying the computational approach adopted here to various other inclusion 
geometries and attachments to seek the optimal enhancement of structures.  
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