

Progress in Dealing with the World's Stockpile of Used Nuclear Fuel – How Can Consolidated Interim Storage and Reprocessing Help?

Frederic Bailly – U.S. Region Director AREVA Back-End Business Group

Waste Management 2014
PANEL 057
Phoenix, AZ
March 4th, 2014

Agenda

- ► France Recycling Program
- Recycling Benefits
- ▶ 2030 Outlook
- **►** Sustainable Cycle Solutions

EDF, AREVA and Andra

Nuclear Power

Plants

Technological, maintenance

and process radioactive waste

(10 to 15 000 m3 / year)

Radioactive Waste Overview

USED FUEL

1050 tons/year

1200 tons/year

FRESH FUEL

Radioactive waste From decomissionning 180 000 tons / 30 years

STORAGE AND DISPOSAL FACILITIES

ILW

(200 m³/year)

Volume ÷ 5

Radiotoxicity ÷ 10

Standardization

Enhanced Proliferation Resistance

HLW

(150 m³/year)

Used Nuclear Fuel and Waste Management: evolution of the French regulatory framework

Over 28,000 tons* of Used Fuel Recycled through La Hague and MELOX

		Tons processed
	EDF France	18 940
	German utilities	5 4 83
	Japanese utilities	2 944
+	Swiss utilities	771
	Synatom (Belgium)	671
	EPZ (The Netherlands)	360
	SOGIN (Italy)	190

^{*} UOX or MOX type fuel

Recycling Benefits in France

- Manages Risks Now
 - Safely Buys Time to Develop a Repository
 - Reduces Interim Storage Needs / No Safeguards
- Optimizes the Use of a Disposal Site
 - Volume and Source Term Reduction
 - Waste Form designed for Disposal
 - Heat Load Management
- Saves Resources
 - **♦ Example of France: saved over 20 000 tons of natural Uranium so far**

- Recycle Once in LWRs
- Multi-Recycle Scenarios in LWRs
- Smooth Transition to GenIV Reactors
 - Limited Number of Fast Reactors AND / OR
 - Transition to Fast Reactors

AREVA - La Hague facilities

2030 Outlook

- Inventories of Used Fuel will have Doubled
- Annual Unloading of Used Fuel will have Doubled
- ► Geological Disposal will be a Scarce & Valuable Resource
- Recycle Helps
 - Time, Interim Storage Needs
 - Optimization of Deep Disposal Use
 - Saves Resources, Flexible Options Open

- All Options are Needed! Interim Storage & Recycling
- Reactor Fleet Situations / Transition Strategies

Sustainable Cycle Solutions

Sustainable Solutions for an optimized, long-term and responsible management of used fuel

RECYCLING & HLW STORAGE

INTERIM OPTIONS FOR USED FUEL

DRY STORAGE

WET STORAGE

TRANSPORTATION SYSTEMS

A smart mix of proven and evolving technologies tailored to stakeholders' needs and constraints

Backup

Reference main streams at La Hague

100% HM of used fuel

Plutonium

1%

Recycling

Uranium 95% ERU Loaded in 4 reactors in France Kept as strategic inventory

MOX

Loaded in 22 reactors in France

The state of the s

Ultimate waste from UNF treatment

CIGEO

HI W-I I -II W

Repository

Waste from Operations

CSA LLW & SL-ILW repository

Used Fuel Inventories

Global nuclear capacity is expected to increase by~+50% over 2012-30

Main drivers of used fuel management

Risk Reduction

- Non-proliferation & security
- Nuclear safety
- Environmental impact & footprint
- Public acceptance

Nuclear System Performance

- Increase energy independence
- Optimize cost of nuclear electricity
- Preserve natural resources
- Minimize waste generated

Optimizing the fuel cycle will become even more crucial to ensure the sustainable growth of nuclear energy

Developing New Offers for Used Fuel Management

Precycling

Pu advance

Fresh MOX

Pu advance

EPZ Reactor

Final disposal

Pu re-imbursement

Global Recycling Services

Damaged fuel treatment

French Policy is Consistent with the Conclusions of the 2010 ORNL Study

- ORNL Analysis Concludes:
 - The cost of implementing full recycle will be an insignificant change to the cost of nuclear electricity
 - Engineered safeguards can be used to provide adequate proliferation resistance
 - Continuing delay will likely occur in locating and operating a geologic repository
 - Continued storage of used fuels is not a permanent solution
- ► With no decision, the path forward for used fuel disposal will remain uncertain, with many diverse technologies being considered and <u>no possible focus on a practical solution to the problem</u>
- However, a decision to move forward with used fuel recycling and to take advantage of processing aged fuels and incorporation of nearcomplete recycling can provide the <u>focus needed for a practical</u> <u>solution to the problem of nuclear waste disposal</u>

Source: Oak Ridge National Laboratory, "Compelling Reasons for Near-Term Deployment of Plutonium Recycle from Used Nuclear Fuels—A Systems Analysis Study"

ORNL: The Risks of Waiting

Continued Storage Concerns — increasing inventory and decreasing radiation barrier

- Current inventory contains ~500 MT of plutonium and annual production is ~20 MT/year
- Radiation barrier decreasing exponentially with time
- At least 50 years required to build recycle capacity needed to match annual production
- With equal recycle capacity and production rates, inventory will continue to increase because of incomplete burnup in each partitioning-transmutation cycle
- Implementation of plutonium recycle is needed

No health impact

► From a radiological standpoint, the site's impact* is 100 times lower than natural radioactivity levels

AREVA La Hague < 0,02 mSv / year

Natural exposure 2,4 mSv / year

^{*}Impact calculated since 2004 using a model produced by the GRNC (Groupe Radio-écologie Nord-Cotentin), making allowance for the results of the AREVA public enquiry (1998), for a reference group: population likely to be the most highly exposed due to its position and lifestyle.

A few comparisons

10 mSv A scan 6 mSv per person Natural exposure in the Limousin area per year 2,4 mSv per Average Natural Exposure in France person per year An abdominal X-ray 1 mSv A chest X-ray 0.1 mSv Consuming 1 ½ liters of mineral water 0.03 mSv every day for a year A transatlantic flight 0.02 mSv A 400-meter change in altitude 0.02 mSv per person per year Consuming 200 g of mussels 0.02 mSv Annual impact of the emissions < 0.02 mSv per person per year from AREVA-La Hague

