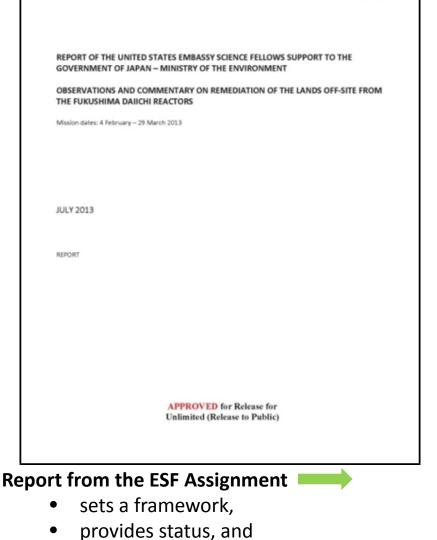


OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

System Perspective in Environmental Remediation of Lands Contaminated from the Fukushima Accident

Robert L. Sindelar, Embassy Science Fellow to Japan 2013

WMS Panel: "Technology Support and Implementation for Clean Up of Fukushima Daiichi NPP" March 6, 2014


SRNL-RP-2013-00303 EPA/600/R-13/135 Revision 0

.

Topics

Fukushima Daiichi Accident Clean-up

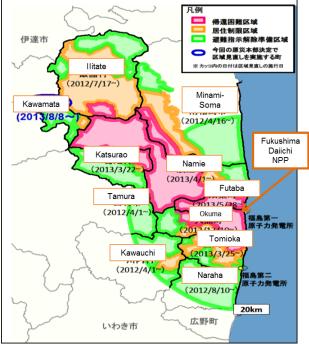
- <u>On-site remediation</u>: Fukushima Daiichi Nuclear Power Station (NPS) site
- Off-site remediation: Outside NPS fence
- Remediation of a Large Land Area with High Contamination
 - Remediation System Elements
 - Selected ESF Report Observations and Recommendations

• recommends improvements for remediation of land with surface contamination

Off-Site Contamination Areas

1 mSv = 100 mrem 0.23 μSv/hour → 1 mSv/yr

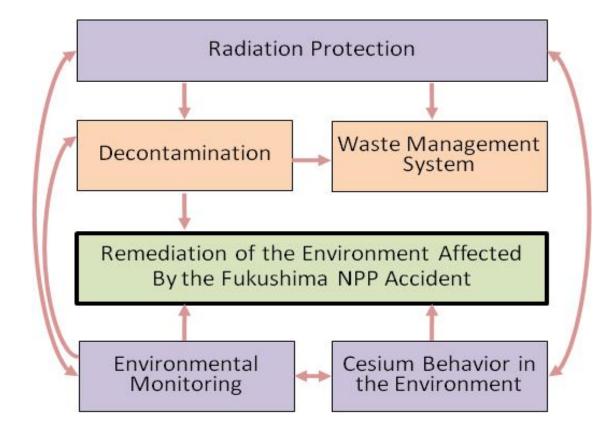
Contamination in <u>Fukushima</u>, Iwate, Miyagi, Ibaraki, Tochigi, Gunma, Saitama, and Chiba prefectures


Intensive Contamination (Survey Area (in green)

Less than 20 mSv/year

Special Decontamination Area (in red)

- o Less than 20 mSv/year
- o 20 to 50 mSv/year
- o > 50 mSv/year



Area 1: <20mSv/yr Evacuation orders are ready to be lifted:

<u>Area 2: 20 – 50 mSv/yr</u> Residents are not permitted to live:

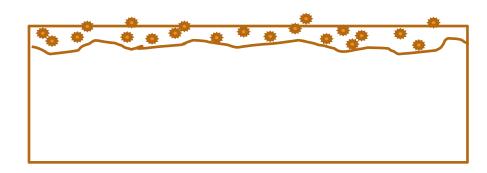
<u>Area3: >50 mSv/yr</u> Residents will have difficulties in returning for a long time:

Systems Perspective for Fukushima Offsite Remediation

Program Elements for an Environmental Remediation System for a Populated Region Contaminated by Cesium

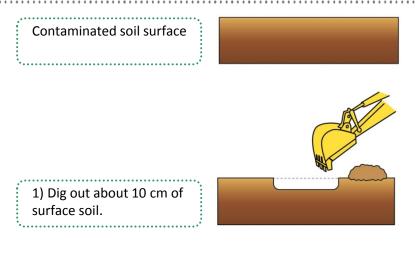
Savannah River National Laboratory

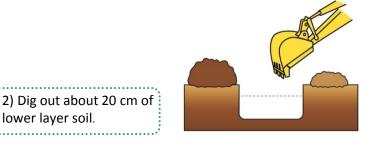
Surfaces to be Decontaminated


- Roads (various materials and designs)
- Soils (agricultural soils, playgrounds)
- Grassy fields
- Home lawns and landscapes
- Building structures (various materials and designs)
- Roofs (various materials and designs)
- Forests

Radioactive materials settled on soil, vegetation, and buildings

Radioactive materials consolidated and shielded




Concept of surface contaminated with cesium

Decontamination Technologies - Present Methods in Use

- Buildings water spray, wipes
- Roofs water spray, wipes
- Roads shot blast, CO₂, high pressure water spray (15 Mpa)
- Fields cut grass
- Soils (farmland) mixing soil or removal
- Forests remove litter, fell trees, natural attenuation
- Advanced technologies investigated (e.g. soil particle separation), few adopted
- Methods listed in <u>GOJ-MOE</u> <u>Decontamination Guidelines</u> and in <u>GOJ-MOE Common Specifications</u>

3) Place the surface soil at the bottom and cover it with the lower layer soil.

Example: Air dose rate reduction over soil (from GOJ-MOE Decontamination Guidelines)

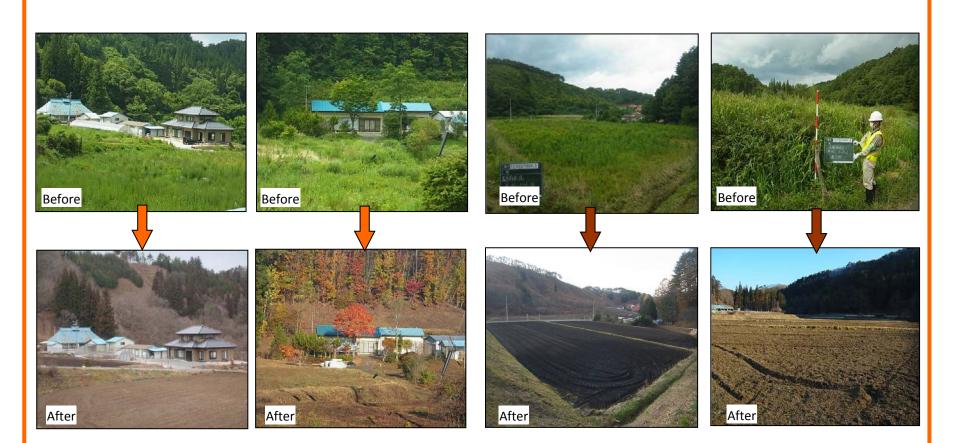
Decontamination Activities

Wiping off rooftop and walls

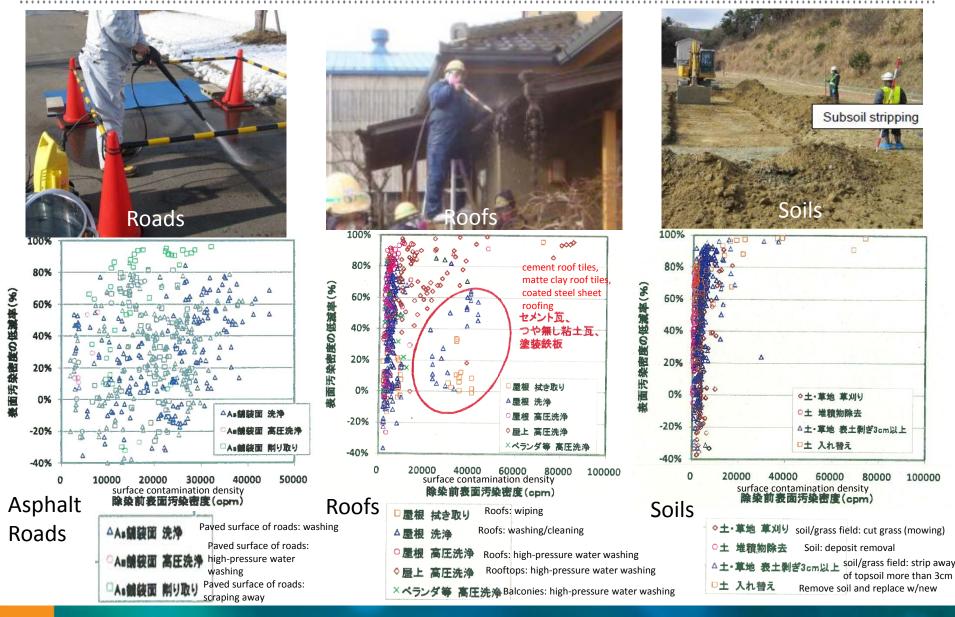
Wiping off a gutter

High pressure water cleaning of a drain pipe

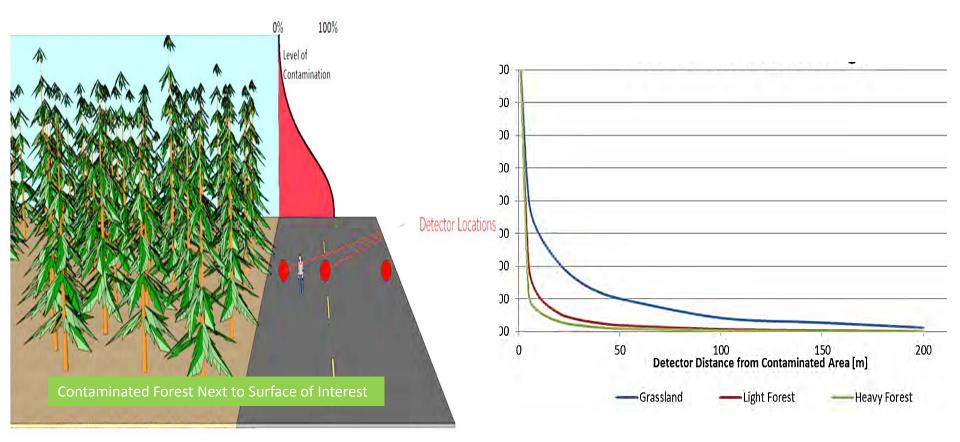
High pressure water cleaning of paved road


Mowing and removal of sludge

Removal of crushed stones and topsoil, and cover with clean soil



Before & After the Decontamination Work


Savannah River National Laboratory

Decontamination Effectiveness - Examples

Savannah River National Laboratory

Need for Collimated Detection – Cesium-137 Contamination

Dose Rate Contribution from Contaminated Surroundings (C. Verst, SRNL)

Decontamination Effectiveness = [1 - (Count Rate After Decontamination)/(Count Rate Before Decontamination)] × 100

Savannah River National Laboratory

Drivers to develop advanced decontamination are to:

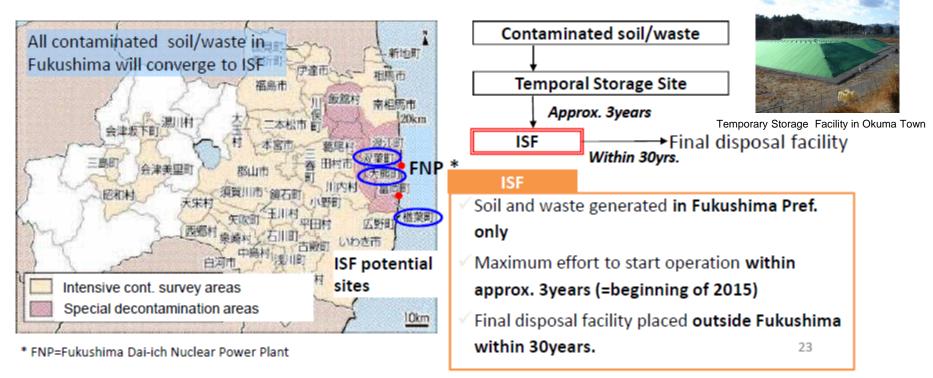
- -Leave the surface essentially intact
- Improve decontamination effectiveness
- -Achieve decontamination more quickly than by present methods
- Achieve decontamination more cost-effectively than by present methods*

*Include waste handling, transportation, storage, and disposal costs

Advanced Decontamination – Model Project Examples

Advanced decontamination methods have been investigated (with JAEA-led and MOE-led projects conducted by vendors)

Decontamination target	Method	Features	No.	Implementer (contractor)
Soil	Heat treatment	Reaction acceleration agent	1	Taiheiyo Cement Corporation
	Separation	Pump separation	2	ROHTO Pharmaceutical Co., Ltd.
		Wet separation	3	Takenaka Corporation
			4	Kumagai Gumi Co., Ltd.
			5	Hitachi Plant Technologies, Ltd.
			6	Konoike Construction Co., Ltd.
			7	Sato Kogyo Co., Ltd.
	Chemical treatment	Organic acid treatment	8	Toshiba Corporation
Sewage Sludge	Elution	Organic reagent treatment	9	Nippon Steel Engineering Co., Ltd.
Parks, <u>roads and</u> <u>buildings</u>	Cutting and stripping	Stripping paint	10	Shiga Toso Co. Ltd.
	Special water-based washing	Nano-bubble water	11	Kyoto University
		Molecular cluster ozone water	12	Nature's Company
	High-pressure water jet washing	Ultra-high pressure (280 MPa)	13	KICTEC Incorporated
	Blasting and stripping	Wet blasting	14	Macoho Co., Ltd.
Tsunami debris	Washing	Washing with water	15	Toda Corporation
		Dry ice cleaning	16	Kantechs Co., Ltd.
Reduction of volume of plants and cow dung	Conversion into manure	100°C or higher	17	Japan Aerospace Exploration Agency
		50-60°C	18	Mikuniya Corporation
Water	Sorption	Zeolite blocks	19	MAEDA Corporation
		Iron ferrocyanide	20	Tokyo Institute of Technology
Woodland and <u>timber</u>	Stripping and solidification	Stripping and cement-based solidification	21	Taisei Corporation
	Washing	Washing with water and incineration	22	Koriyama Chip Industry Co., Ltd.
		High-pressure water jet washing and water treatment	23	Neonite Corporation
	Thinning	Focus on air dose rates	24	Fukushima Prefectural Forestry Research Center
	Undergrowth clearing & stripping	Improving efficiencies of forest decontamination methods	25	Obayashi Corporation


http://fukushima.jaea.go.jp/english/deconfamination/index.html

Waste Management

- Waste management (transportation, storage, disposal) is primary challenge for off-site remediation
- ~15 28 million m³ waste destined for the Interim Storage Facilities in FP

On-site Storage in Naraha Town

Waste management overview (http://www.env.go.jp/en/focus/docs/files/20121128-58.pdf)