

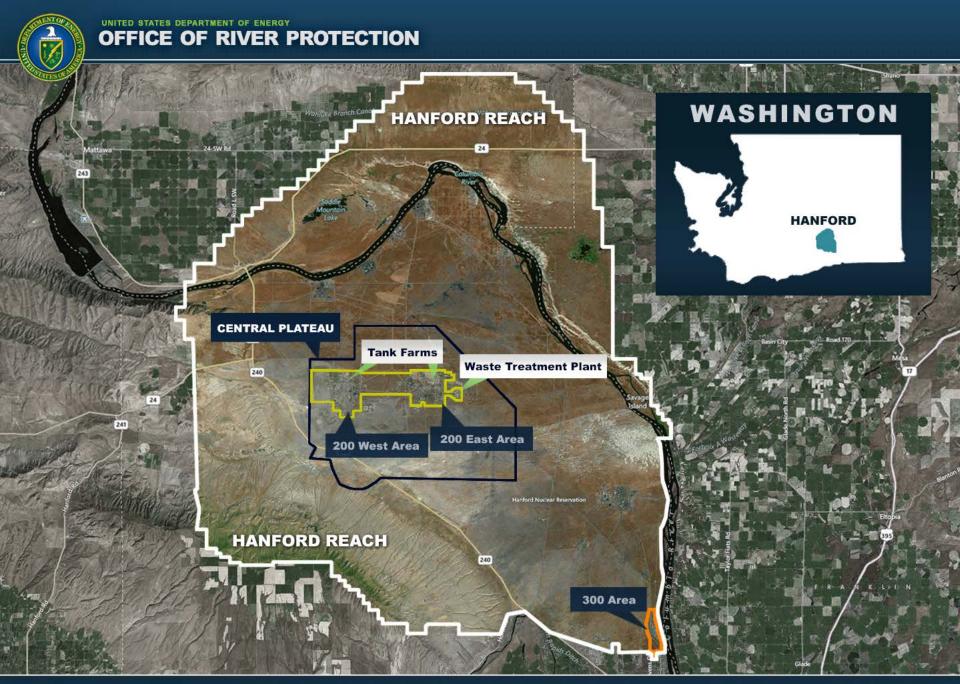
UNITED STATES DEPARTMENT OF ENERGY

OFFICE OF RIVER PROTECTION

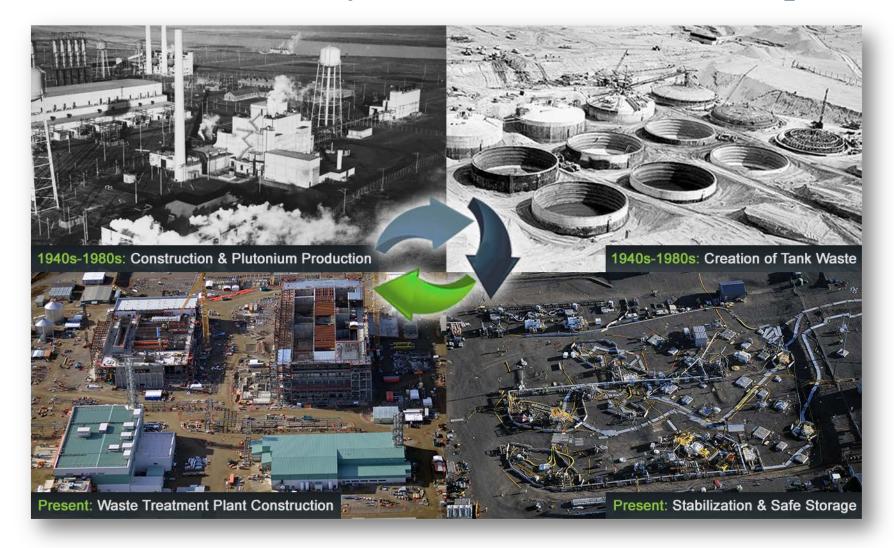
Protecting the Columbia River:The Office of River Protection Mission

2014 Waste Management Symposia

Panel 49: US DOE Feature Site - Hanford


March 4, 2014

Our Mission


To safeguard the nuclear waste stored in Hanford's 177 underground tanks, and to manage the waste safely and responsibly until it can be treated in the Waste Treatment and Immobilization Plant for final disposition.

Our Goal

To be a high performing organization that is the best in the Department of Energy's nuclear defense complex.

Hanford Site History – World War II to Cleanup

Our Team

Office of River Protection (ORP)

ORP is responsible for planning, integrating, and managing the River Protection Program executed by contractors performing work under ORP overall management.

Washington River Protection Solutions (WRPS)

WRPS is the prime contractor responsible for safely managing and operating the Tank Farms.

Bechtel National, Inc. (BNI)

BNI is responsible for the engineering and construction of the Waste Treatment Plant.

Advanced Technology and Laboratories International (ATL)

ATL is the prime contractor responsible for managing the 222-S Laboratory.

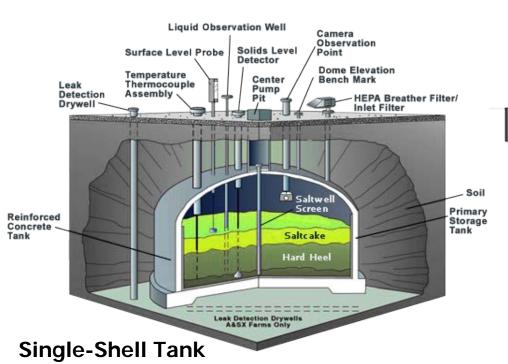
UNITED STATES DEPARTMENT OF ENERGY

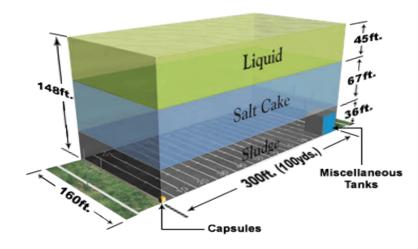
OFFICE OF RIVER PROTECTION

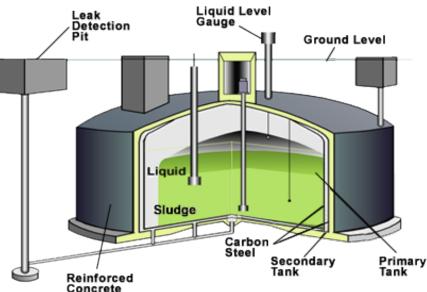
Tank Farms Project

Tom Fletcher
Assistant Manager & Federal Project Director

Hanford's Greatest Challenge


- > 1943-1964: 149 single-shell tanks constructed
 - Up to 67 assumed to have leaked
 - Over 1 million gallons estimated to have leaked
 - 1968-1986: 28 double-shell tanks constructed
 - 1 leaking, waste contained within annulus


Disposition of 56 million gallons of radioactive and chemical waste

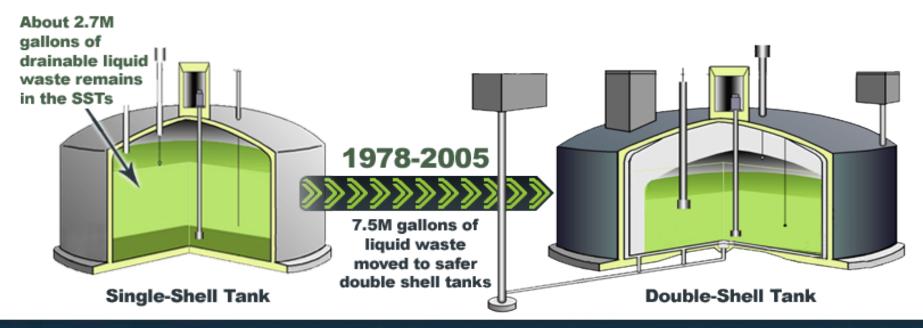


No Two Tanks are the Same

- Waste temperatures range from 60°F to 160°F
- Highly caustic
- Moderate-to-high radioactivity
- No two tanks have the same waste contents
- Most waste produces some hydrogen

Double-Shell Tank

Tank Farms – Complex, Accessible Only from the Surface



Interim Stabilization Completed

- Hanford's single-shell tanks first began leaking in 1959
- 28 double-shell tanks were constructed to address this problem
- Liquid waste was transferred to safer double-shell tanks from 1978-2005
- 2.7 million gallons of drainable liquid waste remains in Hanford's single-shell tanks

CRITERIA IS:

- > < 50,000 gallons interstitial liquid
- < 5,000 gallons free liquid</p>
- < 0.05 gallons/minute pump rate</p>

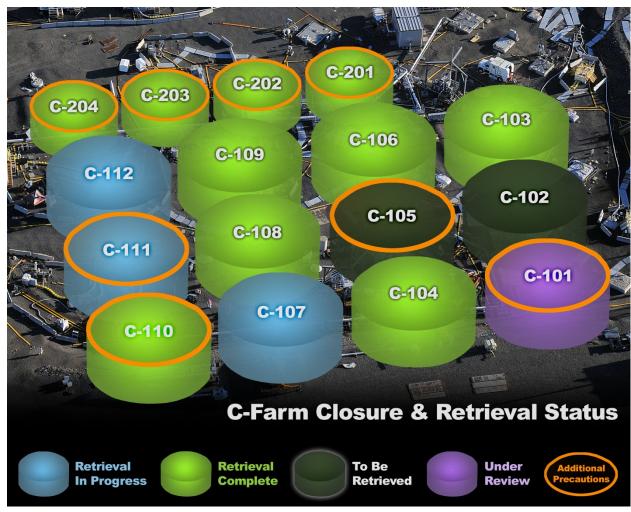
Single-Shell Tank Waste Retrieval in C Farm

RETRIEVAL TECHNOLOGIES

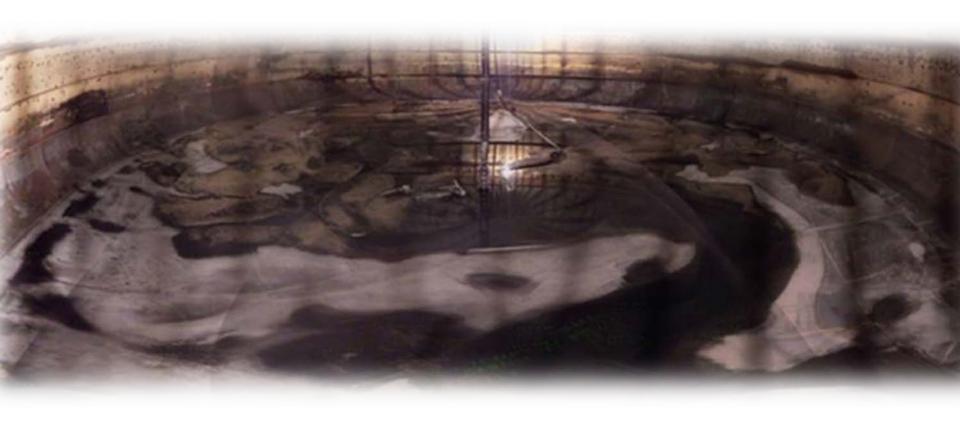
Mobile Arm Retrieval System Sluicing (MARS-S)

Chemical Dissolution

Enhanced Reach Sluicing System (ERSS)

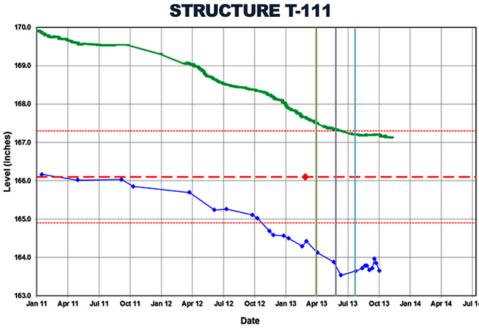

Modified Sluicing

In-Tank Vehicle (Foldtrack)



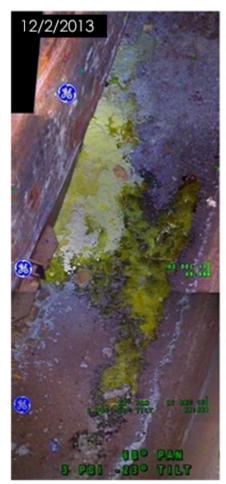
Mobile Arm Retrieval System Vacuum (MARS-V)

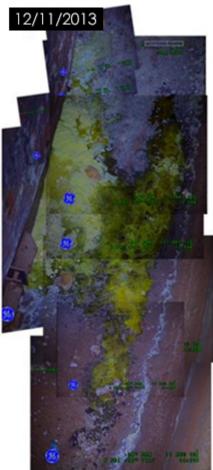
Aerial photograph of C-Farm with graphical overlay that depicts current status of each single-shell tank


Tank Farms Retrieval Progress – Inside Tank C-110

This composite image of dozens of individual-frame photos taken inside Tank C-110 provides a rare panoramic view of the tank interior

Single-Shell Tank Liquid Level Monitoring





View inside tank T-111 with ENRAF tank level gauge visible

Tank AY-102 Changes Over Time

Tank AY-102 – Robotic Crawler

Robotic crawler was navigated through 60 feet of six-inch drain line underneath Tank AY-102

Operational Challenges Being Addressed

- Maximize DST storage space
- Improve Tank Farms infrastructure
- Complete C Farm retrieval
- Commence next SST retrievals

UNITED STATES DEPARTMENT OF ENERGY

OFFICE OF RIVER PROTECTION

Hanford Tank Operations Contract

Dave Olson

President & Project Manager

Tank Operations team

- Washington River Protection Solutions (WRPS) is a prime contractor to DOE's Office of River Protection
- WRPS is a joint venture between URS Corporation and Energy Solutions, with integrated subcontractor AREVA
- ~1,500 employees; just wrapped up fifth year of operations; contract extended through FY-2016; FY-14 budget of \$520 million

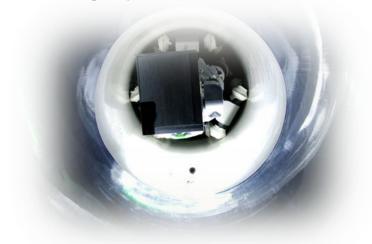
Mission Statement

WRPS is committed to the safe and efficient management, retrieval and treatment of radioactive and hazardous tank waste to protect the Columbia River

Challenge: Maximize DST storage space

242-A Evaporator

Challenge: Improve tank farm infrastructure



Tank farm infrastructure improvements

DST ventilation

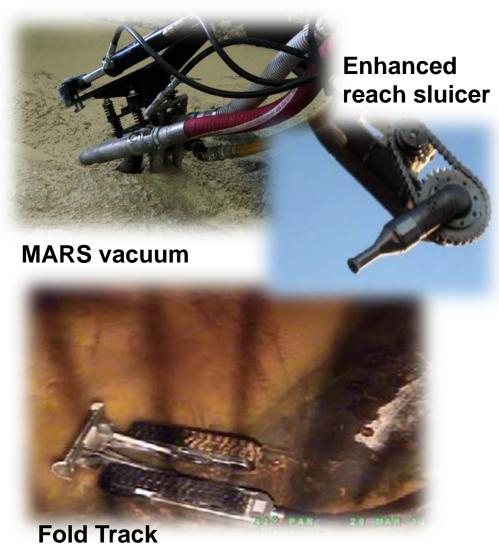
Tank integrity

Weatherization

Control systems

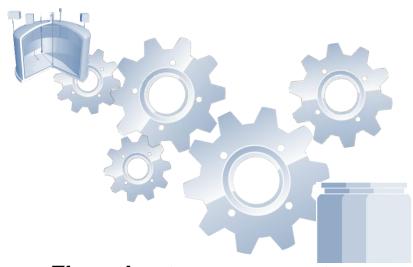
Challenge: Complete C Farm retrieval

Hanford tank retrieval progress



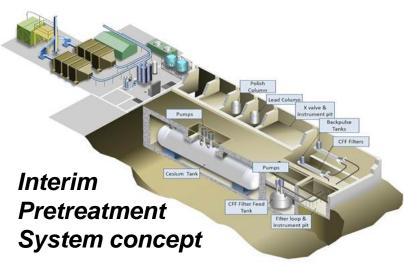
Waste retrieval technologies

C-105 dome cut



Challenge: Commence next SST retrievals

Challenge: Integrate through One System with WTP


Flow sheet management

National lab outreach

Summary

- Improving tank farm stewardship
- Maintaining focus on retrievals
- Increasing outreach to national laboratories
- Transitioning to potential line item project management
- Expanding integration with the Waste Treatment Plant

Potential gas release event testing

UNITED STATES DEPARTMENT OF ENERGY

OFFICE OF RIVER PROTECTION

Waste Treatment and Immobilization Plant Project

Bill Hamel
Assistant Manager & Federal Project Director

WTP Leadership Changes in 2013

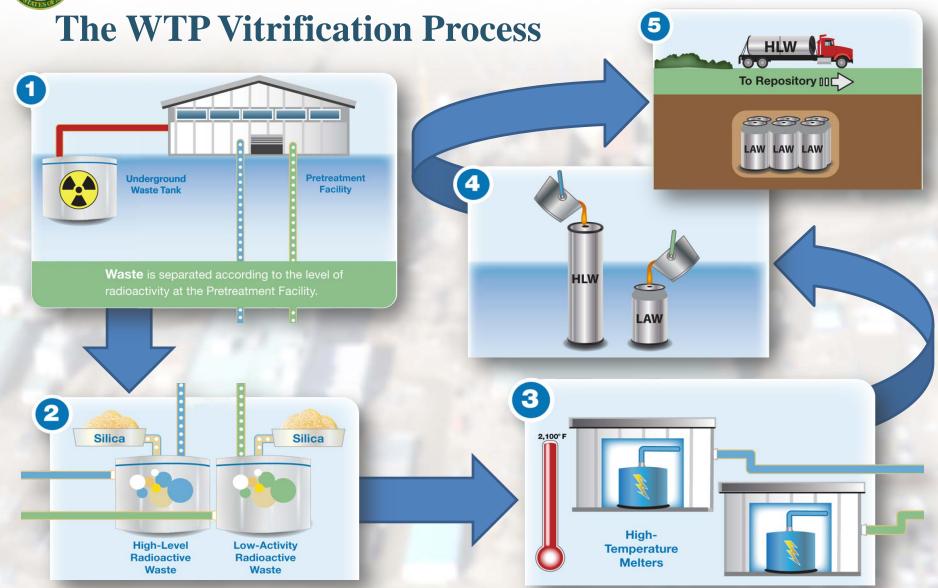
Kevin Smith
ORP Manager
January 2013

JD Dowell ORP Deputy Manager October 2013

Bill Hamel WTP Assistant Manager February 2013

Peggy McCullough
WTP Project Director
July2013

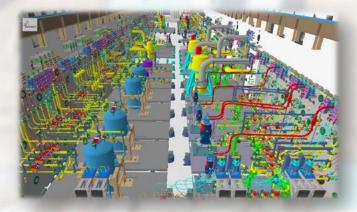
Waste Treatment Plant Project Details

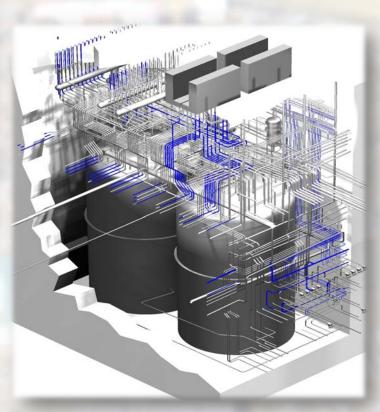


The WTP Mission: Immobilize the Waste in Glass

Vitrification offers the best solution for immobilizing Hanford's high-level radioactive waste for reducing the risk

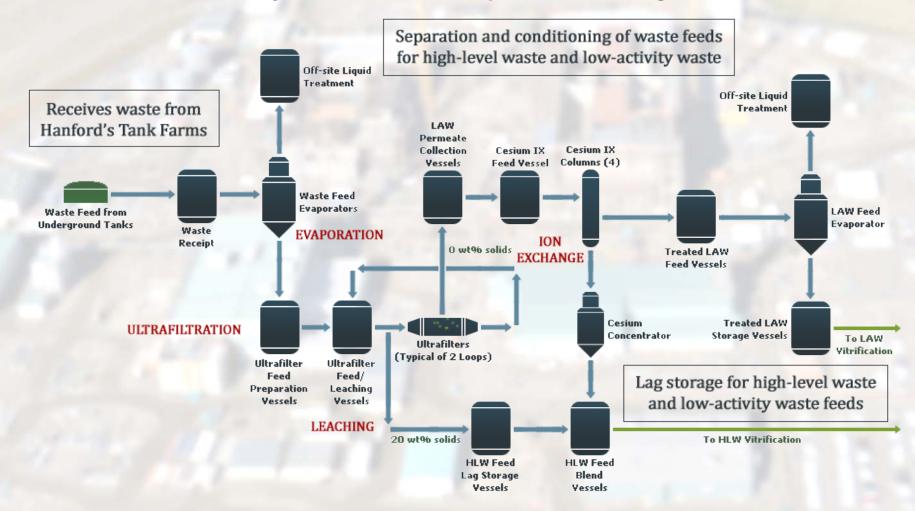
WTP's Four Nuclear Facilities




Pretreatment Facility – Separates Solids and Liquids

Exterior

Hot cell



Vessels and pipes in black cell

The Challenge

Pretreatment Facility Functions and Simplified Flow Diagram

High-Level Waste Facility – Makes High-Activity Glass Canisters

Exterior

Melter Bay

Truck Bay Walls

Bridge Crane

Low-Activity Waste Facility – Makes Low-Activity Glass Containers

Overhead pipe racks for steam and glass formers

Carbon bed adsorber

Transfer Tunnel

Melter

Analytical Laboratory – Process Samples Testing

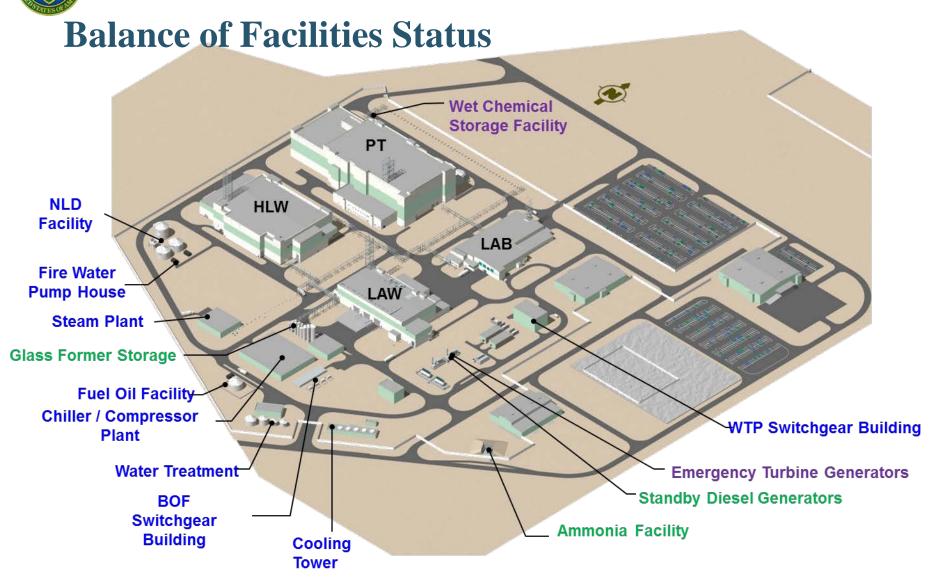
Exterior

Fume hoods

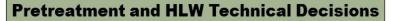
Air-handling systems

Balance of Facilities – Supports Operations

20 support buildings for the Balance of Facilities


Overhead pipe racks for steam and glass former materials

Glass former piping


Glass former silos

Facility Complete/Construction in Progress/Construction Schedule Aligned with PT/HLW

WTP Technical Issues

Technical Decision #	Item
T1	Hydrogen gas release from vessel solids
T2	Criticality in WTP vessels
T3	Hydrogen in piping and ancillary vessels (HPAV)
T4	Pulse jet mixing vessel performance
T5	Erosion and localized corrosion
T6	Design redundancy in black cells/ in-service inspection (ISI)
77	Black cell vessel structural integrity
T8	Facility ventilation
Т9	Waste preconditioning requirements

UNITED STATES DEPARTMENT OF ENERGY

OFFICE OF RIVER PROTECTION

WTP Project Accomplishments

Peggy McCullough Project Director

Achieved Safest Year in Project History

- Completed 2013 with the lowest number of recordable injuries in project history
 - No recordable injuries in Lab
 - No lost work days in LAW, BOF and Lab

Analytical Laboratory

10,000 samples per year ensures glass meets regulatory requirements

- 320 feet X 180 feet x 45 feet tall
- 12,000 cubic yards of concrete
- 1,800 tons of structural steel

- 35,000 feet piping
- 172,000 feet electrical cable
- 314,500 pounds heating and ventilation ductwork

2013 LAB Accomplishments

- Completed installing 32 nuclear-quality, stainless steel throughplugs in the hot cell, each of which weigh about 160 pounds and will provide radiation shielding
- Continued installing analysis lab fume hoods and equipment
- Installed more than 32 miles of cable

Electricians run cable through high purity gas system control panels outside of the Analytical Laboratory

The Analytical Laboratory exterior

The Analytical Laboratory hot cell exterior

Low-Activity Waste Vitrification Facility

Turns low-activity waste into glass in two 300-ton melters

- 330 feet X 240 feet x 90 feet tall
- 28,500 cubic yards of concrete
- 6,200 tons of structural steel
- 103,000 feet piping

- 840,000 feet electrical cable
- 945,000 pounds heating and ventilation ductwork

2013 LAW Accomplishments

- Progress made toward LAW completion expected in 2015
- Started placement of LAW melter refractory casting and brick, which comprises 18 cubic feet of casting, more than 200 refractory bricks and more than 30 wall and gas barrier lid placements
- Started installation of LAW melter trough and dam equipment
- Completed LAW lidding equipment installation
- Started installation of power rails for bogie trolley in transfer tunnel

A 25-ton crane is being installed to continue work on the Low-Activity Waste Facility melters

Canister drums are set on the melter turntables at the Low-Activity Waste Facility

Power rail for the bogey trolley is set in the Low-Activity Waste Facility

Balance of Facilities

Vast infrastructure to support operations

Includes:

- Steam plant
- Chiller/compressor facility
- Electrical substation& switchgear
- Water treatment facility
- Glass former storage
- Emergency power facility
- Cooling tower
- Underground waste transfer systems

2013 BOF Accomplishments

- Completed Steam Plant
- Completed turnover of Switchgear building to Startup
- Started foundation for emergency power generators
- Completed six system turnovers to Startup in Switchgear buildings 87 and 91
- Completed more than one mile of pipe installation and testing on overhead pipe racks

Piping and equipment installed inside the Balance of Facilities steam plant

Balance of Facilities employees continue building the foundation for the emergency power generators

An employee covers pipe with insulation in the Balance of Facilities chiller compressor plant

High-Level Waste Vitrification Facility

Turns high-level waste into glass with two 90-ton melters

- 440 feet X 275 feet x 95 feet tall
- 88,000 cubic yards of concrete
- 11,500 tons of structural steel
- 165,000 feet piping
- 1.6 million feet electrical cable
- 1.1 million pounds heating and ventilation ductwork

2013 HLW Accomplishments

- Completed placement of structural steel to the 37-foot elevation of the HLW, meeting a Consent Decree milestone between DOE and Washington state
- Set 30 tons of structural steel to the 77-foot elevation
- Completed installation of structural steel for the import bay
- Completed slab concrete placements for the 37-foot elevation
- Continued concrete placements to the 58-foot elevation

The High-Level Waste Facility

Ironworkers begin rigging a steel beam to be lifted into the High-Level Waste Facility

Employees continue installing structural steel at the 77-foot elevation of the High-Level Waste Facility

Commodities Installed Project-Wide

Commodities installed in 2013:

• Concrete: 2.860 cubic yards

• Steel: 581 tons

• Pipe: 16,126 linear feet

HVAC: 37,326 pounds (19 tons)

Cable tray: 2,865 linear feet

Conduit: 48,219 linear feet

• Cable and wire: 253,080 linear feet

Commodities installed to date:

• Concrete: 227,068 cubic yards

• Steel: 21,074 tons

• Pipe: 442,592 linear feet

 HVAC: 1,786,405 pounds (893 tons)

• Cable tray: 50,345 linear feet

• Conduit: 418,776 linear feet

Cable and wire: 606,645 linear feet

Pretreatment Facility

World's largest radioactive chemical separations facility

- 540 feet X 215 feet x 120 feet tall
- 114,000 cubic yards of concrete
- 17,000 tons of structural steel

- 540,000 feet piping
- 1,491,000 feet electrical cable
- 1,796,000 pounds heating and ventilation ductwork

Pretreatment Facility

Panorama of the Pretreatment Facility

Pretreatment Facility black cell

Structural steel frames a corner of the Pretreatment Facility

Path Forward for WTP Completion

www.hanfordvitplant.com

www.twitter.com/HanfordVitPlant

www.facebook.com/HanfordVitPlant

Our Team

Office of River Protection (ORP)

ORP is responsible for planning, integrating, and managing the River Protection Program executed by contractors performing work under ORP overall management.

Washington River Protection Solutions (WRPS)

WRPS is the prime contractor responsible for safely managing and operating the Tank Farms.

Bechtel National, Inc. (BNI)

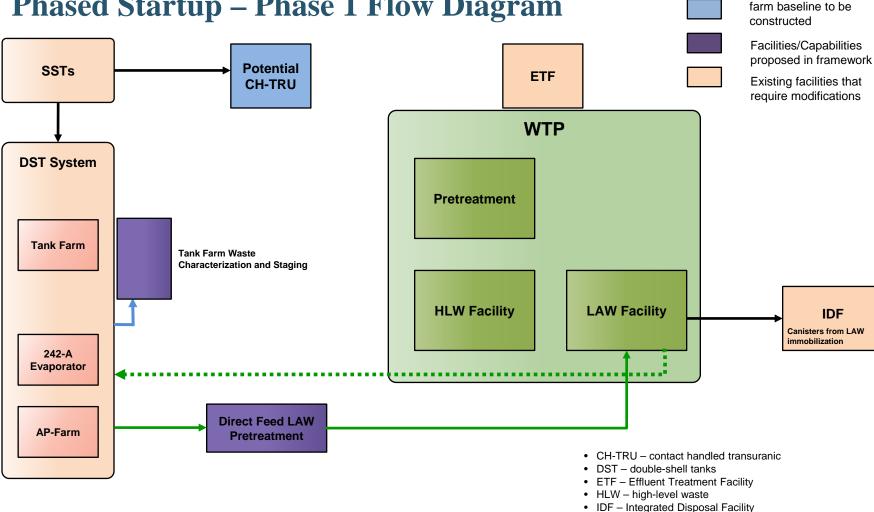
BNI is responsible for the engineering and construction of the Waste Treatment Plant.

Advanced Technology and Laboratories International (ATL)

ATL is the prime contractor responsible for managing the 222-S Laboratory.

DOE's Phased Approach to Mission Completion

The Secretary of Energy's "Framework" calls for Hanford's cleanup mission to be completed in three phases.

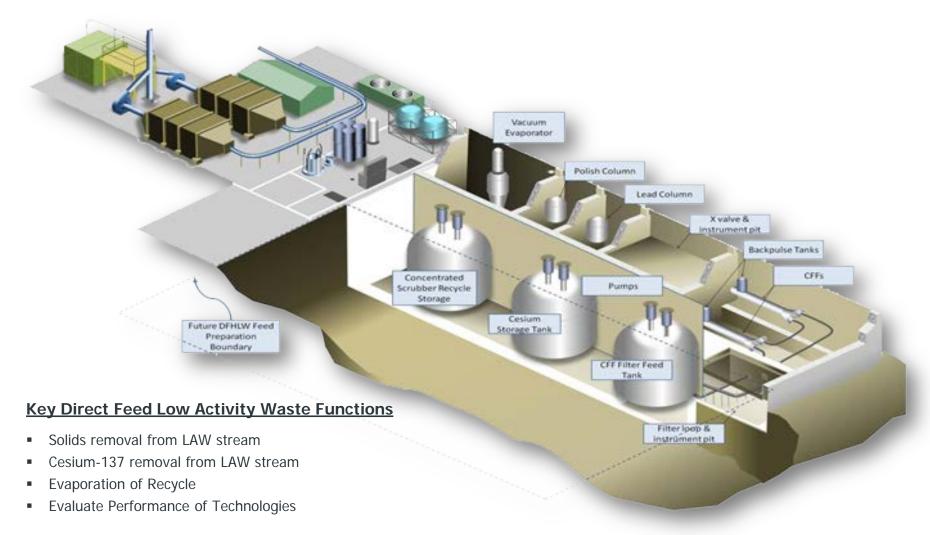

Hanford Tank Waste Retrieval, Treatment, and Disposition Framework

September 24, 2013

U.S. Department of Energy Washington, D.C. 20585

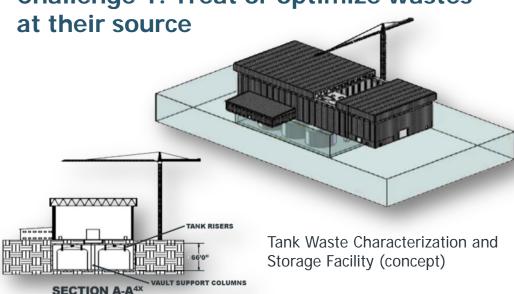
Phased Startup – Phase 1 Flow Diagram

Environmental Management
M safety * performance * cleanup * closure


Facilities in the tank

• LAW - low-activity waste SSTs -- single-shell tanks

Plant


• WTP - Waste Treatment and Immobilization

Conceptual Design Direct Feed LAW

Grand Challenge – Utilizing our National Labs

Challenge 1: Treat or optimize wastes

Create a greater role for the National Labs in flow sheet management and stewardship

Challenge 2: Eliminate or substantially reduce LAW off-gas condensate recycle

ORP's Top 10 Challenges

Out-year Funding Profiles

Aging Tank Farm Infrastructure

Technical Issues Resolution

Tri-Party Agreement/Consent Decree Milestones

Decision to Proceed on HLW – Production Engineering

Moving Waste from 200 West Tank Farm

Transition to WTP Operations

Quality

Nuclear Safety Basis

Finding Efficiencies to Shorten Lifecycle

Protect the Public, the Environment and Our Workers

Protect the Columbia River

Safety Always Comes First!

White Bluffs overlooking the Columbia River on the Hanford Reach

