

# **Tank Waste Risk Reduction at SRS**

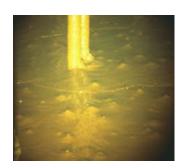
Past, present and future

Jean M. Ridley, P.E.

Director, Waste Disposition Programs Division Savannah River Operations Office

March 5, 2014

## **Liquid Waste Program Operations**


"Liquid waste at SRS is the single greatest environmental risk in South Carolina"

#### Program focus:

- Safely storing 37 million gallons of radioactive liquid waste
- Operating major nuclear facilities to support H-Canyon missions and to treat and disposition tank waste
  - Operating interim salt waste processing system
  - Vitrifying highly radioactive radionuclides at the Defense Waste Processing Facility (DWPF)
  - Disposing low level residuals in Saltstone Disposal Units (SDUs)
  - Constructing the Salt Waste Processing Facility (SWPF)
- Emptying, cleaning and closing waste tanks

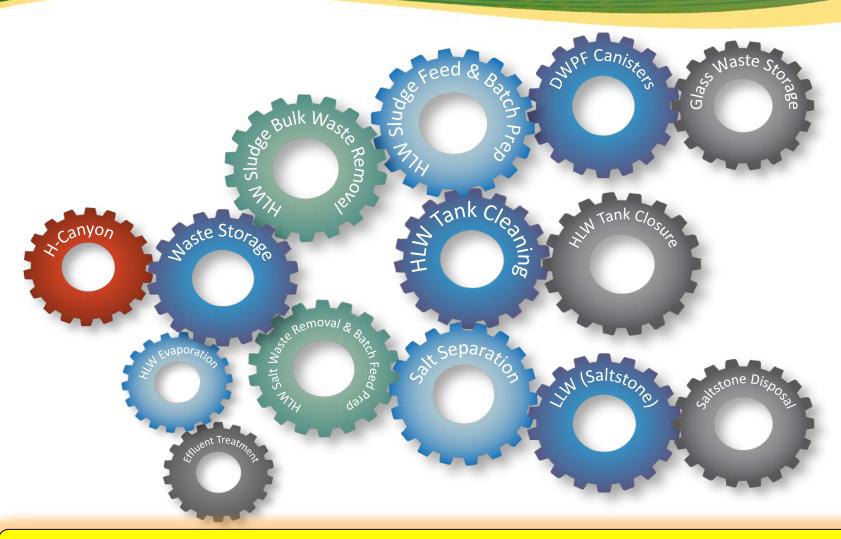




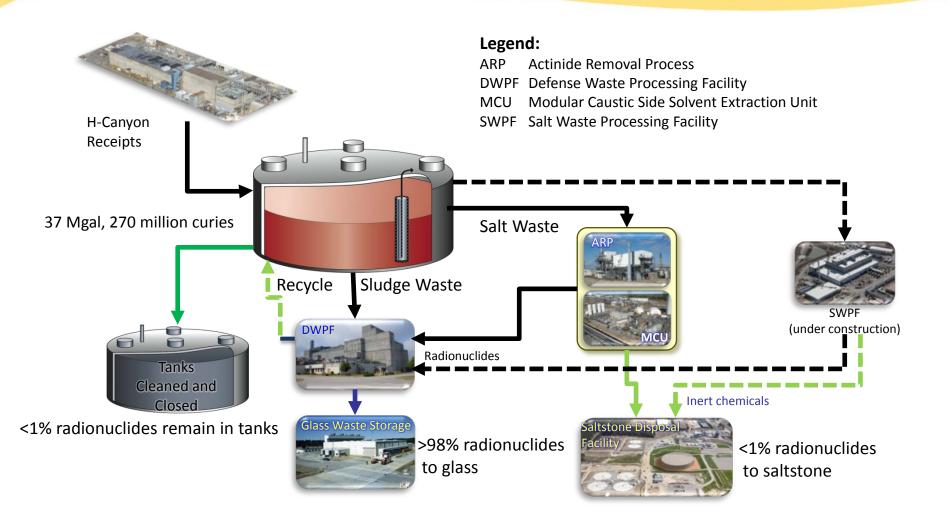







Salt Supernate

Saltcake


Sludge

Safely Stored Canisters

## **Liquid Waste Program Integration**



Safe storage, treatment, and disposition of SRS liquid waste requires synchronization of several highly interdependent nuclear facilities and chemical operations



#### **Defense Waste Processing Facility**

- World's largest vitrification plant
- Entire 37 million gallons of waste awaiting disposition has about 270 million Ci of radioactivity
- Almost all radioactivity from waste dispositioned via DWPF – over 50 million Ci to date
- Over 3,700 canisters filled since 1996



#### **Interim Storage of Canisters**

- DWPF Glass Waste Storage Buildings (GWSB)
  - Seismically qualified underground concrete vaults
- Designed for safe interim storage
- Approaching capacity of existing storage
  - GWSB 1 is full (contains 2,244 canisters)
  - GWSB 2 contains ~1,460 canisters (2,340 capacity)
- Modular storage concept being considered for remaining cans
  - Targeting operational readiness by 2018



#### **Saltstone Processing Facility**

- Vast majority of waste volume from tanks but little radioactivity – left in SC
- Curies left in SC are treated for disposal at the Saltstone Processing Facility
  - Salt solution stabilized by mixing with cement, flyash and slag
  - Resulting grout mixture mechanically pumped into concrete Saltstone Disposal Units (SDUs)
- Safely processed over 7 Mgal of low-level radioactive liquid salt wastes to date containing approximately 400 KCi of radioactivity



#### **Saltstone Disposal Facility**

- Engineered low level waste disposal facility
- Grout is non-leaching and has low water permeability
- Initial 12-cell rectangular vault (Vault 4) filled
- Saltstone Disposal Unit (SDU) -2 modern watertight design – now full
- SDU 3 and 5 completed and being filled
- Currently constructing 3<sup>rd</sup> generation SDU-6





# Interim Salt Processing Facilities



**Modular Caustic Side** 

- Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit operational since 2008
- Remove actinides, Strontium and Cesium (Cs-137) from salt waste
- Nominal capacity 1.5 Mgal/yr
- Over 4 million gallons treated to date
- Decontamination and throughput exceed initial expectations
- Completed service life extension program
- Completed installation of Next Generation Cesium Solvent
- Providing operating experience for SWPF startup and initial operations







# **Future Salt Waste Treatment Capability**



# Salt Waste Processing Facility



Constructed by Parsons

#### This critical facility will:

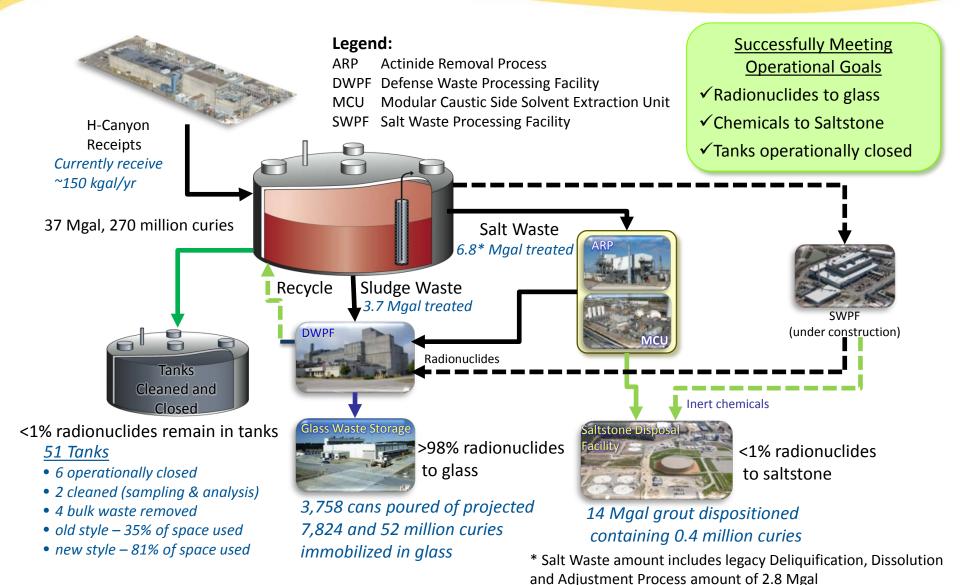

- Reduce radioactive waste volume requiring vitrification
- Utilize the same actinide and cesium removal unit processes as Interim Salt Processing Facilities
- Ultimately process over 90% of Tank Farm liquid radioactive waste

# Liquid Waste Processing End State



### Tank Closure

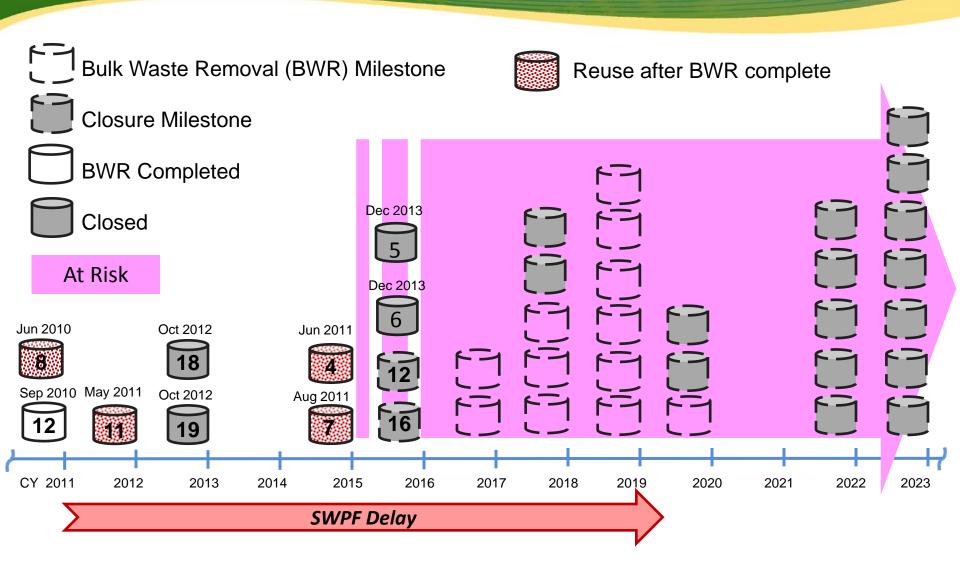
- All tanks will be emptied of waste, cleaned and closed
- Removal and closure of 24 "Old Style" tanks driven by Federal Facility Agreement (FFA)
- Tanks 17 and 20 closed in 1997
- Tanks 18 and 19 were closed in 2012
  - Working with regulators and stakeholders, completed ahead of FFA milestone
- Tanks 5 and 6 were closed in Dec 2013
  - well ahead of 2015 FFA milestone






Pouring grout into SRS waste tanks (April 2012)

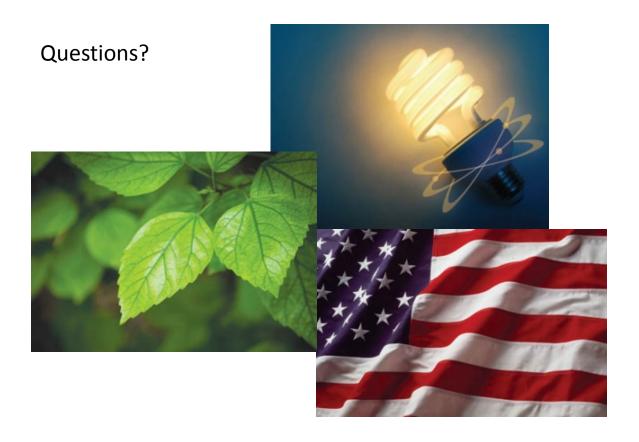
### **Liquid Waste System Today**


(as of January, 2014)



# SRS Liquid Waste Program – Challenges

- Delays in construction of SWPF have adversely impacted ability to meet regulatory commitments
  - Tank waste removal and closure milestones identified in the SRS FFA
  - Striving to meet FFA milestone to close Tanks 12 and 16 in 2015
  - Removing and treating salt waste is key to meeting future FFA milestones
  - SRS currently ahead of schedule, but all out year milestones are at risk
- Reduced program funding expectation limits opportunities to mitigate delays
  - Will seek opportunities to deploy beneficial new technologies
    - Next Generation Cesium Solvent (currently being deployed in MCU)
    - Small Column Ion Exchange (additional funding required)
  - Opportunities for additional system efficiency are limited
    - Must guard against tendency to drastically reduce infrastructure preservation and maintenance spending to fund program milestone progress
  - Shifting planning priority toward timely system readiness for SWPF operation


# **Effects of Reality - FFA Commitments**



# SRS Liquid Waste Program – Future Focus

- Tank waste cleanup mission remains a top EM priority, but the pace of progress must slow to match reduced available funding
  - Will work with South Carolina Department of Health and Environmental Control and US Environmental Protection Agency to address future regulatory milestones
  - Will seek additional efficiencies and sharing of expertise to re-accelerate pace
- SRS will continue to treat and disposition salt and sludge waste to reduce environmental risk
  - Continue to operate DWPF and interim salt treatment facilities
    - Reduce risk
    - Maintain space for safe operations
  - Focus on system readiness for SWPF operations
    - o Complete critical infrastructure improvements
    - Make space for preparing feed
    - Qualify feed in preparation for startup
- Will continue to support critical H-Canyon missions



