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ABSTRACT 

Data imaging and visual data assessment are veritable gold mines in the scientist’s quest to 
understand and accurately interpret numerical data.  Graphical displays of various aspects of a 
dataset offer the analyst insight to the data that no mathematical computation or statistic can 
provide.  It is difficult, at best, for even a skilled and observant statistician to understand the 
underlying structure of a dataset.  Often, there is either too little data to get a good “picture” of 
the structure that might be present or there is so much data that one cannot readily assimilate it.  
Of course, the latter problem (too much data) is, in reality, no problem at all given the abilities of 
modern computers and software systems to manage large amounts of data. 

Advances in computer technology and the advent of the global positioning satellite system have 
enabled scientists from many fields of endeavor to collect and view data in its spatial context.  
Visual images constructed from spatially referenced data reveal the inherent richness and 
structure in the data and lead to more informed conclusions.  So powerful is data collected with 
spatial context that a relatively new branch of mathematical statistics, geospatial statistics, has 
emerged.  Geospatial statistics seek to exploit this context rich data form to better understand 
the spatial and co-relationships that might exist, but would be otherwise hidden in tabular data or 
obscured with classic statistical approaches. 

This paper will show the power that visual data assessment possesses to understand 
radiological scanning data and to make confident and accurate decisions based on the data 
images.  It will challenge the traditional mathematical concept of detection limits for scanning.  
It will demonstrate that more data, even if the individual datum comprising the dataset is of 
“poorer quality” (i.e., has a larger uncertainty and, thus, a larger calculated minimum detection 
value), is significantly more powerful than a smaller dataset comprised of higher quality 
measurements.  The open-minded health physicist may well rethink how they prescribe, collect, 
evaluate, and make decisions based upon radiological scan data. 

INTRODUCTION 
 
There is a well-known and often quoted adage, “a picture is worth a thousand words.”  It 
testifies to the superior power of visual images to convey information or meaning.  The 
truthfulness of that saying is readily recognized by most people, and it is manifest in the way that 
information is presented to us.  For example, consider the assembly procedure that is supplied 
with a new personal computer system.  Rather than a book with pages of words, the assembly 
procedure is communicated to us by the manufacturer with a series of color-coded images 
arranged in a deliberate sequence and contained on just one chart-sized page.  The visual 
presentation is far more effective because it is presented in a way that intuitively conveys 

1 



WM2014 Conference, March 2 – 6, 2014, Phoenix, Arizona, USA 

 

meaning.  If we sometimes find it difficult to accurately convey meaning with words, then 
conveying meaning with data presents even greater challenges. 

Why is it that images readily convey meaning yet we often struggle to convey meaning with 
words and numbers alone?  The answer lies in the manner that the human brain processes 
information.  New information is always processed within an accepted or understood context.  
Even if there is precious little context provided with a sequence of words or numbers, our brains 
automatically search for what we consider to be an appropriate context within which to examine 
the words or numbers.  That does not mean that the context we understand or accept will be 
correct.  In any communication, the more context provided, the more likely the recipient is to 
accurately understand the message.  Images have the distinct advantage of being inherently 
context rich. 

Images are so powerful at revealing context and conveying thought and meaning that they are 
the first tools a child uses to communicate cognitive thought.  We teach our children language 
by linking words and sounds to images.  The ability to communicate mathematics and to 
evaluate data comes much later and with far more difficulty for most.  Often, people will say that 
mathematics is too abstract for them to grasp or understand.  The Latin root of the word 
abstract literally means “to draw away.”  It conveys the idea of being devoid of, or lacking in, 
context.  Think of the genre of art known as abstract art.  This art form is one in which the 
intellectual and affective content depends solely on the intrinsic form of the art itself.  In other 
words, it cannot be evaluated in an objective sense. 

Even those among us who are mathematically literate will arrive at incorrect conclusions about 
data if it is not presented and understood in the proper context.  Context is everything!  The 
sciences are based upon the collection and interpretation of observations (data).  Like all good 
scientists, health physicists seek to be objective and analytical in the assessment of radiological 
data, particularly when we are asked to make a decision regarding compliance or radiological 
release.  That is the essence of the MARSSIM [1] guidance.  Its protocols seek to establish an 
accepted analytical framework within which one can assess radiological data to arrive at logical 
and defensible decisions.  These methods rely heavily on mathematical data evaluation.  
Notably, MARSSIM recommends that data be graphically interpreted and presented for review in 
order to learn about the structure of the data and to identify patterns, relationships, and 
anomalies (MARSSIM, page Roadmap-12).  It suggests that both histograms and posting plots 
be developed at a minimum.  In other words, these visual representations of the data provide 
the necessary context required to appropriately interpret the data. 

The NIST Engineering Statistics Handbook [2] describes the vital role that visual data imaging 
plays in properly assessing data using an approach called exploratory data analysis (EDA).  
The underlying reason that the EDA approach relies so heavily on data imaging (graphics) is that 
graphics give the analyst unparalleled power to open-mindedly explore the data without 
preconception or assumption.  Visual data assessment entices the data to reveal its structural 
secrets offering new, often unsuspected, insight into the data.  It powerfully combines the 
natural pattern recognition capabilities that we all possess with the raw data collected providing 
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unparalleled power to the assessor.  The NIST Engineering Statistics Handbook [2] so strongly 
recommends visual data analysis that it boldly states, “if one is not using statistical graphics 
[visual data presentation], then one is forfeiting insight into one or more aspects of the underlying 
structure of the data.” 

TYPES of VISUAL DATA PRESENTATIONS 
 
There are many applications for the concepts of data imaging, and scientists have long 
employed these techniques in a variety of scenarios.  For example, histograms, density plots, 
scatter plots, probability plots, run sequence plots, box plots, correlation plots, and lag plots 
(among others) are tools that allow the analyst to visually represent numerical data.  The power 
of these visual tools is significant.  They reveal structure (or the lack of structure) that underlies 
the numerical data and offer the analyst insight and intuitive understanding that cannot be readily 
recognized by tabular mathematical evaluation alone. 

Each of the graphical techniques described above are designed to reveal some aspect of the 
mathematical nature of a dataset.  Contour plots are unique in that they allow the presentation 
of three dimensions, allowing the analyst to evaluate numerical data within the spatial context 
from which they were collected.  They are commonly used in spatial data analysis where the “x” 
and “y” coordinates are used to represent directional distance (such as northing and easting, or 
latitude and longitude) while the “z” dimension is used to represent the magnitude of the variable 
of interest.  One of the earliest and most commonly recognized applications of the contour plot 
is the topographical map.  There, the “z” dimension is used to represent elevation. 

The contour map is conceptually the same as the posting plot recommended in the 
MARSSIM [1].  The difference is that the posting plot simply displays numerical data in a spatial 
context while the contour plot extends the concept by interpolating the numerical data1 in order 
to graphically represent the data with iso-response contour lines (Fig. 1). 

 

1 The actual techniques for determining the correct iso-response values are rather complex and are almost always computer-generated.  It is not the 
purpose of this paper to discuss the various techniques that can be used to derive iso-response values and draw iso-response curves. 
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Fig. 1. EXAMPLE POSTING AND CONTOUR PLOTS [2] 

Even in this simple example, the more graphically rich contour plot conveys more intuitively what 
the data is suggesting. 

This paper focuses primarily on the use of contour plots generated with spatially referenced 
radiological data. 

 
DATUM QUALITY vs. IMAGE QUALITY 

Advances in computer technology together with the advent of the global positioning satellite 
(GPS) system (and other spatial referencing tools) have enabled scientists from many fields of 
endeavor to collect and view data in its spatial context.  This is true for health physicists with 
radiological data collected in support of characterization and remediation activities.  
Unfortunately, we sometimes overlook or discard the richness that can be derived from the visual 
assessment and interpretation of spatially referenced radiological scanning data.  This is, in 
part, because as health physicists we are trained to assess data quality on an individual 
measurement basis.  However, such an approach ignores critically relevant information or, 
worse, biases the assessment of data quality when there are multiple measurements that relate 
to one another (correlate) in space or in time. 

For example, the common formula [classically described by Currie [3] and revised and 
recommended in the MARSSIM [1] used to calculate the minimum detectable concentration 
(MDC) is fundamentally designed to predict the value above which the measure (e.g., 
concentration, count rate, or activity) of a single data point would be statistically significant 
relative to background and confidently measured in the presence of varying background (Eq. 
(1)). 

𝑴𝑫𝑪 = 𝑪 ∗ �𝟑 + 𝟒. 𝟔𝟓√𝑩� (Eq. 1) 
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To be fair, the MDC described by MARSSIM is intended to be used as an a priori estimator of the 
sensitivity and, thus, detection capability of a given measurement system.  Unfortunately, the 
very design of this mathematical approach is constructed to produce a point-by-point estimate, 
discounting the fact that in many cases it is a population of data that is being collected and 
evaluated.  In addition, the construct of the MDC beckons the analysts to perform point-by-point 
comparisons of each data point.  Of course, if only one or few data points are available, the 
point-by-point comparison might be the most appropriate approach.  In contrast, however, this 
approach ignores two critically valuable aspects of a voluminous, multi-point dataset that is 
collected within a spatially referenced context. 

First, the mathematical construct of the MDC formula uses a single data point to represent the 
background response of the measurement method and to then predict, by assumption, the 
distribution and variance in the measured background.  With modern spatially referenced 
data-logging measurement systems, it is possible to actually measure the response of the 
measurement method to the background distribution and variance directly using a large, 
multi-point dataset, thereby avoiding the assumptions inherent in the traditional approach. 

Second, it discounts the valuable information that can be derived by evaluating the spatial 
construct (the context) of the data.  This has the effect of ‘forcing’ the analyst to evaluate 
individual data points in isolation and on a purely mathematical basis.  Considering the inherent 
probabilities involved with any inferential statistical method, the likelihood is that some data 
points will be judged to exceed background (or exceed detection limits) when, in reality, they are 
simply properties of the inherent variability in background and the measure of it.  To reduce the 
likelihood of such anomalies, a health physicist might choose to increase measurement time in 
an attempt to smooth out the measured response.  When this occurs, the analyst is actually 
averaging the response over time and perhaps unwittingly discarding potentially critical 
information that is collected from a different context—the time domain. 

To avoid these pitfalls and obtain the most from our measurement data, we must rethink how we 
collect and analyze data.  The natural and most effective approach to evaluate data and derive 
meaning from it is to consider the data in the domain from which it was observed or collected.  
The human mind automatically and inextricably works in this way.  When collecting data, we 
should strive to collect as much data as possible (both radiological data and contextually relevant 
meta-data) while avoiding measurement techniques that deprive us of valuable context.  When 
evaluating data, it is imperative that we understand and consider the context(s) that applies to 
the data. 

To illustrate the concept, consider the following example (Fig. 2).  A paragraph that is widely 
publicized on the internet refers to a study that was designed to evaluate the cognitive 
capabilities of the human mind with respect to proper (or improper) spelling of words  It well 
illustrates the vital importance of context.  Attempt to read the following paragraph.  The 
context has been obscured by removing every 2nd, 3rd, and 4th word in a sequence of four (i.e., 
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the modified paragraph contains every fourth word, only the 1st…5th…9th…13th…etc. words, from 
the original paragraph). 

 

Fig. 2. Sample: Context Deprived 

Could you make sense of the paragraph?  NOT LIKELY!  The missing words deprive you of 
the logic that is derived from the sequential “context” of the language, dramatically limiting the 
value of the words that are present. 

Interestingly, since we cannot make contextual sense of the paragraph, the human mind 
naturally redirects its focus to analyzing each word independently in an attempt to derive any 
meaning from the words. 

Now, read the same paragraph again in Fig. 3.  This time all of the words are displayed in their 
intended sequence (context), but most are horribly misspelled.  See if you can make sense of 
the paragraph this time. 

 

Fig. 3. SAMPLE: POOR SPELLING QUALITY, BUT COMPLETE CONTEXT 

Which version yields the most useful information?  Likely, you had little problem reading and 
deriving meaning from the latter version.  When the missing words are provided, the context is 
readily discerned even though most of the words are grossly misspelled.  The quality of the 
individual words is poor, but their relationship to one another (the context) is far more important 
to deriving meaning than their spelling.  It is clear that more context, not better spelling (i.e., 
quality) is more valuable!  There is a similar relationship applicable to spatially referenced 
numerical data. 

According at doesn't order a only that.  ls at the rest total can without 
because does letter the whole. 

Aoccdrnig to rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht 
oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and 
lsat ltteer be at the rghit pclae.  The rset can be a toatl mses and you can 
sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed 
ervey lteter by istlef, but the wrod as a wlohe. 
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Significance of Imaging Resolution 

Data images are used to present and evaluate spatially referenced numerical data.  Image 
resolution is determined by the number of pixels or data points per unit area.  In fact, the 
production quality of an image is defined by its resolution, driving our selection of everything from 
cameras (with “x” number of mega pixels) to high definition television sets (1080p v. 720p - pixels 
per inch) and computer monitors. 

To illustrate this graphically, consider the following sequence of images that make use of 
progressively smaller but more numerous mosaics (pixels) to form the image (Fig. 4).  The 
pixels themselves are composed from a variety of non-sequitur images that are completely 
unrelated to the underlying image.  The underlying image in each successive frame is identical. 

In the first frame, the resolution is very poor, preventing the analyst from deriving logical meaning 
(visual recognition) from the image.  As a consequence, the analyst is enticed to focus on the 
individual pixels in an effort to make some sense of the image.  Of course, such a narrow focus 
is improper and fruitless because it is the overall image that is truly of interest.  In addition, since 
the information conveyed by a single pixel may not accurately relate to the overall image, one 
could easily be biased or led to inaccurate conclusions.  As the number of pixels increase, their 
size decreases, and the analyst’s ability to discern the content of the individual pixel is 
diminished (i.e., the pixel quality goes down).  Yet, the ability to draw conclusions about the 
underlying image, and even subsections of the image, improves. 

In the series of images, it is easy to see that the resolution of the image produced, not the quality 
of the individual pixels making up the image, is what reveals the context and determines the 
amount of information revealed.  The conclusion is that image resolution (the number of data 
points per unit area) determines the logical information that can be derived from a spatially 
referenced dataset.  When image resolution is appropriately rich, one can make confident 
decisions on subsets of the whole image.  For example, in the final frame, it is easy to discern 
(to make a confident decision about) the demarcation between Einstein’s body and the 
chalkboard in the background.  As resolution increases (progressing from frame 1 through 
frame 6), we become more confident in our ability to distinguish various aspects of the image. 

Application to Radiological Data 

This concept has a direct and powerful relationship to spatially referenced radiological data such 
as that collected with automated data-logging radiological scanning systems.  In radiological 
scanning terminology, image resolution is the number of data points per unit area.  Pixel quality 
is analogous to MDC. 
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Fig. 4.  THE IMPACT OF DATA VOLUME (PIXEL SIZE) ON IMAGE QUALITY 

 

Consider the following example in which two scenarios involving non-spatially referenced data 
are compared. 

 

Fig. 5. COMMON RADIOLOGICAL SCENARIO 

SCENARIO A: 

A technician makes a single, 10-minute measurement of the radioactive emission from a 
discrete sample. 

SCENARIO B: 

A technician makes ten, 1-minute measurements of the radioactive emission from the 
same sample. 

1 2 3 

4 5 6 
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The total measurement time in the two scenarios is equivalent, suggesting that the average or 
mean count rate in the two scenarios should be equal.  The single, 10-minute measurement 
from Scenario A is more accurate than any individual 1-minute measurement from Scenario B.  
But the set of ten, 1-minute measurements from Scenario B reveals more information about the 
radioactivity in the sample than does the single 10-minute measurement!  One could, for 
example, plot the sequence of measurements in time series and possibly discern some 
information about the radioactive half-life or ingrowth relationships.  One could plot the 
sequence of measurements using a histogram or a probability plot and graphically discern the 
nature of the distribution of the data.  Neither of these techniques is available if the data were 
collected as described in Scenario A.  Both techniques rely upon evaluating data in the context 
from which they were collected.  Even in this simple example, it is clear that context is vitally 
important to the analyst’s ability to discern meaning from the data. 

When the capability to measure and record data in its spatial context is exploited, it is as if 
entirely new vistas are opened, revealing new aspects of the data in ways that can lead to new 
insights with remarkable clarity.  However, in order to take full advantage of this powerful 
exploratory data imaging technique, the analyst must acknowledge that it is not the so-called 
quality of the individual piece of data that matters.  Rather, it is the resolution (the number of 
pieces of data per unit area or volume) of the image produced by evaluating clusters of spatially 
oriented data that provides insight. 

It is precisely this concept that has driven the dramatic advances in medical imaging, including 
radiological imaging techniques such as computed axial tomography (CAT) scanning.  The CAT 
scanner (as well as other spatially referenced radio imaging techniques) relies on the detection 
of emitted or scattered radiation and provides a nearly perfect analogue for spatially referenced 
scanning measurements made in radiological characterization and remediation surveys.  CAT 
scanning systems collect many thousands of measurements, each made in just a fraction of a 
second.  The pixel (or voxel, for 3-dimensional images) size is variable but is always quite small, 
commonly on the order of 0.2mm.  As a result, the data quality of each individual logged data 
point is very poor.  However, the number of pixels per unit area is extremely high.  The 
computer logs the radiological data, together with the axial and radial position of the detector 
relative to the patient and then assembles the large, spatially relevant data to form a 
high-resolution, high-quality image.  These images provide an exceptional degree of accuracy 
and precision upon which physicians and experts in the field rely to make exacting diagnostic 
decisions (remedial action decisions) and surgical interventions (remedial actions).  Not once 
does the analyst question the quality of an individual pixel of data, because in the bigger picture, 
it is simply not important.  Rather, the analyst looks quite naturally to the image formed by the 
spatially presented dataset and can readily see patterns that signal either a normal or abnormal 
physiology. 

In this final example, a radiologically impacted site was measured with a radiological scanning 
system connected to a computer and a real-time, spatial-referencing detection system.  The 
resulting dataset contained over 30,000 discrete, spatially referenced measurements distributed 
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over a space smaller than 1 acre.  Graphically displaying the spatially oriented data using a 
series of various-sized, color-coded mosaic tiles provides insight to the significant role that 
spatial resolution has on our interpretation of the data.  The progressive sequence of images 
(frames 1 through 9 of Fig. 6) shows the radiological data from the site with greater and greater 
resolution (smaller and smaller pixel size).  The number of pixels (and, thus, the resolution) 
increases progressively in each successive frame. 

 

Fig. 6.  THE IMPACT OF PIXEL SIZE (RESOLUTION) ON THE RADIOLOGICAL DATA IMAGE QUALITY 
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It is informative and noteworthy to consider how the analyst’s perception and interpretation of the 
data might evolve as the image resolution presented evolves.  If the conventional, 
point-by-point, tabular mathematical approach to the assessment of the data was employed, 
more than 1,500 measurements would be judged to “exceed background by more than the MDC” 
even if there was no added radioactivity (no radiological impacts) present.  Additionally, a 
significant number of the individual measurements would be judged as lacking sufficient quality, 
as defined by the MDC.  However, when the same dataset is evaluated in its spatial context, a 
clear and accurate image emerges.  The high resolution, data-rich image that results does not 
specifically contradict previously collected data, but does dramatically refine the analyst’s 
understanding of the deposition and distribution of radiological contamination at the site.  More 
importantly, it fundamentally changes the remedial approach to the site, potentially saving 
millions of dollars in unnecessary and improperly focused remediation.  Furthermore, it 
substantially changes and improves the assessment of the “as-left” radiological condition of the 
site. 

GRAPHICAL DETERMINATION OF DETECTION LIMIT 

This paper has advocated that the quality of individual data pieces (as measured by the classic 
assessment of detection limits) is substantially less important than collecting and evaluating high 
resolution, spatially referenced datasets.  This is not to say that an understanding and measure 
of the actual detection sensitivity (limit) achieved is without value.  However, there is a better, 
holistic, and graphical way to assess and interpret radiological detection limits as they relate to 
populations of data such as that measured with scanning systems. 

Probability plots are powerful tools that are capable of revealing the presence of multiple 
populations.  They are also useful in that they graphically reveal the demarcation point between 
two statistically different populations of data merged together in the same dataset.  Note the 
example below in Fig. 7. 

In this illustrative case, there exists a distinct “knee” in the distribution of the data points in the 
probability plot.  Such a knee is indicative of more than one population.  A single best fit line 
(e.g., least squares best fit) through the entire dataset would not well represent either of the two 
populations evident in the first frame of (Fig. 7).  To estimate the demarcation point between the 
two populations, the analyst may fit a straight line through the two apparent populations as 
illustrated in the second frame.  Assuming that the lower, less variable population represents 
background, the intersection of the two best fit lines (frame 3) represents the actually observed 
and discernable demarcation point between background and added radioactivity (the upper 
population).  This graphically observable demarcation between the two populations 
appropriately describes the concentration (e.g., count rate, activity) above which added 
radioactivity was detected and discernable from background radiation response.  In other 
words, it is the MDC actually observed a posteriori for the dataset as a whole and not for a single, 
independent measurement.  While not mathematically rigorous, it does reveal the detection 
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sensitivity that is of greatest value to the analyst—the sensitivity actually achieved with multiple 
measurements made over the decision unit (e.g., survey unit) involved. 

 

Fig. 7.  GRAPHIC APPROACH TO ESTIMATING OBSERVED DETECTION SENSITIVITY FOR A POPULATION 

 

In the case of datasets collected during radiological scanning surveys, it is likely that some of the 
measurement data will come from areas that are not truly impacted by added radioactivity while 
other measurement data will come from locations where there are measureable impacts.  
Consequently, making comprehensive scanning measurements over the entire survey unit is 
more likely than not to yield probability plots similar to that shown in Fig. 7.  Nonetheless, some 
may argue that one cannot know that one of the populations is truly background.  While this is 
true in the strictest sense, the assumption that it does represent background is a conservative 
assumption.  If the analyst wanted to ensure that a background data subset from a nonimpacted 
area was included and compared using this approach, he could simply make a set of 
measurements in the selected reference background area (although such a technique is not 
without its own unique set of statistical problems). 

CONCLUSION 

Like the physician who seeks greater insight by means of high resolution, spatially oriented data 
imaging tools such as a CAT scanner, health physicists should seek greater insight into the 
relative distribution of radiological contaminants in the remedial environment.  We should insist 
on collecting and recording data complete with the contextual information from which it was 
taken, making use of the techniques and tools available to us to more competently evaluate the 
significance of the measurements we make.  We should rigorously look for variances in data 
that reveal inherent spatial structure and which yields vital information that can and should guide 
our judgments and decisions.  We must avoid the temptation to demand that individual 

1 2 3
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measurement quality meet some a priori estimator of sensitivity when our decisions are more 
appropriately based on a population of measurements representing the whole. 

Imagine what we would be saying about our physician if he ordered a CAT scan for some 
diagnostic purpose, and then rather than reading the computer-generated, spatially referenced 
image, he insisted on reviewing each individual (0.2 mm) pixel of data in tabular form, 
discounting those that independently failed to yield a conclusive result! 

Rather than blindly following a data quality recipe conceived and intended to address a different 
technique altogether, health physicists and environmental scientists should embrace the fact that 
advances in technology have moved us to a place that allows us to use new tools and new 
ingredients in ways that give us unprecedented insight into the spatial structure of the data that 
we collect.  This insight, if we choose to consider it, provides us with the means to make more 
informed and accurate decisions regarding the assessment and remediation of residual 
radioactivity in our environment. 
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