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ABSTRACT 

The effective macroscale elastic coefficients for porous media saturated by a liquid are 
calculated by numerically solving the micro-cell elastostatic problem defined in the process of 
applying the homogenization theory to periodic porous media. Two different types of pore 
geometry are considered: circular and rectangular. By minimizing a variational principle which 
is approximated by finite elements, the solid displacements in the solid region are obtained and 
are used to determine the effective elastic coefficients on the macroscale. Two groups of elastic 
coefficients are investigated: the conventional effective elastic coefficients caused by imposed 
macroscale strain and the pressure coefficients which signify the elastic response of the medium 
to the pore pressure change. It is shown that the elastic coefficients generally decrease whereas 
the pressure coefficients increase as the pore fraction increases. 
 

INTRODUCTION 

The elastic properties of subsurface geological formations are important physical characteristics 
for proper management of the underground repository. Alteration of stress field caused by 
various disturbances such as surcharge or overburden, pore pressure change, and temperature 
variation may impose some threat to the functioning of the underground facility. Therefore it is 
essential to know the elastic characteristics of the underground rock medium which in general 
has pores of various shapes.  

Calculation of the elastic coefficients for a real rock media with complicated pore geometries is 
at present very difficult and is probably next to impossible. In this study, rather simple pore 
geometries are considered: the circular and rectangular pore shapes. It is assumed that these 
pores are distributed periodically in space in the solid rock medium. The pores are assumed to be 
saturated by water.  

The theoretical framework is based on the homogenization theory which systematically 
combines the processes on the microscale(of order l) and deduces the governing equations and 
the effective coefficients on the macroscale(of order L) [1]. It is assumed that the two spatial 
scales are disparate so that l << L. Under two basic assumptions, (i) the periodicity of the 
medium structure on the microscale with periodic length l and (ii) the periodicity of all variables 
and material properties. The periodicity assumption is not very restrictive because the 
distributions and arrangements over the periodic length are quite arbitrary. 

Starting from the basic governing laws on the microscale with multiple-scale perturbation 
expansion the governing laws on the macroscale are deduced with no recourse to empirical or 
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experimental methods. During the process certain microscale boundary-value problems in a unit 
cell are defined whose solution is used in the calculation of the effective macroscale elastic 
coefficients. If the pore geometry is specified, the solution to the unit cell problem is found by 
numerical method which minimizes the variational principles that are obtained from the cell 
problem. Specifically, for the chosen pore geometries, the finite element method has been used 
to solve the unit cell problems 

 

THE GOVERNING RELATIONS ON THE MICROSCALE 

The porous medium is assumed to be composed of the matrix(Ωs) of solid rock phase and the 
fluid phase(Ωf) that fills the pore space. Each phase is assumed to be connected throughout the 
porous medium. Fluid flow takes palce by macroscopically imposed pressure gradient over the 
medium. 

The basic governing equations in the solid domain(Ωs)  and the fluid domain(Ωf) and the 
boundary conditions on the interface(Γ ) are desribed.  

In Ωs, the quasi-static equilibrium equation with Hooke’s law must be satisfied. 

In Ωf, the basic governing equations on the microscale are the conservation of mass and the 
conservation of momentum[1].  

On the boundary Γ  between the solid and fluid, the continuity of the kinematic variables(the 
fluid velocity and the solid velocity), and the continuity of stress must be satisfied. 

The governing equations and the boundary conditions are normalized by using the representative 
scales(refer to [1] for details.).  

 
MULTIPLE SCALE ANALYSIS 
The distinguishing features of the multiple scale perturbation analysis are briefly summarized. 
Recognizing the scale disparity in the process of elastic deformation, two distinct length scales 
are introduced: the microscale(the fast scale which is equivalent to the representative elementary 
volume in the traditional treatment of the process) and the macroscale(the scale over which the 
processes of interest take place from the viewpoint of reservoir engineering and management). 

The variables are expanded as perturbation series in the following small parameter  

      (Eq. 1) 

in which  is the microscale length and is the macroscale length. Upon expansion of the 
governing equations and boundary conditions, the microscale boundary-value problems are 
investigated separately according to the respective order of  and,  through volume-averaging 
over the micro-cell, the effective macroscale governign equations are derived.  

In the process of the multiple scale analysis, a few canonical micro-cell boundary-value 
problems are defined whose solutions are used in the calculation of the effective medium 
properties(effective macroscale coefficients) by averaging over the micro-cell volume. 
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THE MICRO-CELL  BOUNDARY-VALUE PROBLEM 
(1) If the solid displaement is expanded in a perturbation series, 

     (Eq. 2) 

The leading order term   is independent of the microscale and the correction term is 

expressed as  

 (Eq. 3) 

where  is the leading order fluid pressure,  is the unit cell average of , and the 

summation convention is assumed. From now on a pair of angle brackets denotes the unit cell 

average. 

The third-order tensor  and the vector   are solutions of the following problem: 

(Eq. 4) 

where  is the elastic coefficient of rank four and   is the outward normal vector on the 
interface pointing from the solid to fluid. 

 

(2) After solving the elastostatic problems defined above the effective elastic coefficients and 
the pressure coefficients are calculated as[1] 

 (Eq. 5) 

    (Eq. 6) 

 

VARIATIONAL PRINCIPLES FOR THE MICRO-CELL PROBLEMS 

From the micro-cell elastostatic problems the following variational principles for  and  are 
derived(The derivation is omitted.) 
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(Eq. 7) 

where the superscript symbol mn is for the elastic strain in the solid domain on the macroscale 
and no summation over mn is assumed. It is assumed that the solid phase is isotropic. Then 

 (Eq. 8) 

in which  and are dimensionless Lame’s constant and E is Young’s modulus. 

 

COMPUTATIONAL DOMAIN 
The pores(circular and square shapes) are located at the center of the micro-cell of square shape. 
The configuration of the cell is obvious and the sketch is not shown here. They will be shown 
later in the discussion of the numerical results. The radius of the circular pore and the half width 
of the square pore range from 0.1 to 0.4 of the cell size. Due to the symmetry of the pore 
geometry about the horizontal and vertical centerlines the computational domain is reduced to 
one quarter of the micro-cell. Hence the computation has been carried out in the reduced domain 
by using finite elements.  

 
PROPERTIES OF THE SOLID ROCK MATERIAL 
Typical elastic coefficients are summarized in Table 1 below in which .is Poisson’s ratio. 
 

Table 1. Elastic coefficients of some rocks[2]. 

 
The following sets of values are chosen: 

 Material  1:  = 0.4 and = 0.4 

 Material  2:  = 0.8 and = 0.4 

 

CONVERGENCE OF THE NUMERICAL SOLUTION 
In order to check the accuracy of the numerical solution, several mesh discretizations have been 
used for a medium with Material 1 and a circular pore geometry with   = 0.2(  being the 
radius of the pore) and the results are summarized in Table 2 below.  
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Table 2. Convergence of displacements and the average stress for circular pore with  = 0.2. 

 

 

 
The convergence pattern is more than satisfactory enough and ‘Mesh 4’ has been used 
throughout the computation. 

 

NUMERICAL RESULTS AND DISCUSSION 
Solid Displacement 
 The solid displacement caused by unit macroscale strain in x-direction only is shown. 

(1) Circular pore 

- For solid material type 1 (  = 0.4 and = 0.4) the traction force acting on the interface 
is  t = (1.2, 0) at (x, y) = (r0, 0) and t = (0,4. 0) at (x, y) = (0, r0) which is more than three 
times larger than that at (x, y) = (r0, 0). The displacement for various r0 values is as 
shown in Fig. 1. 

(a) (b) 
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(c) 

Fig. 1. Solid displacement in a unit cell made of Material 1 (  = 0.4 and = 0.4)  with a 
circular pore: (a) r0 = 0.1, (b) r0 = 0.2, and (c)  r0 = 0.3. 

The contrast of the displacements at (x, y) = (r0, 0) and (x, y) = (0, r0) is the larger for 
smaller  r0, because the size of the solid domain to respond to the traction at the interface is 
larger for smaller  r0.  

- For solid material type 2 (  = 0.8 and = 0.4) the traction force acting the interface is  t 
= (1.0, 0) at (x, y) = (r0, 0) and t = (0, 0.2) at (x, y) = (0, r0) which is ony one-fifth of the 
former. The displacement for various r0 values is as shown in Fig. 2. 

- (a) (b)  
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(c) 
Fig. 2. Solid displacement in a unit cell made of Material 2 (  = 0.8 and = 0.4) with a 
circular pore: (a) r0 = 0.1, (b) r0 = 0.2, and (c)  r0 = 0.3. 

 
Although the contrast of the displacement at (x, y) = (r0, 0) and (x, y) = (0, r0) shows quite 
similar trend as in the case of Material 1, it is noted that the displacement at (x, y) = (0, r0) is 
pointing to the center even for compressive traction there, i.e., the movement of the 
interface is against the force acting on the interface.  

(2) Square pore 

- For solid material type 1 (  = 0.4 and = 0.4) the traction force acting on the interface is  
t = (1.2, 0) at (x, y) = (h/2, 0) and (0, 0.4)  at (x, y) = (0, h/2) where h is the width of the 
square pore. The displacement for various h/2 values is as shown in Fig. 3. 

(a) (b)  
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(c) 

Fig. 3. Solid displacement in a unit cell made of Material 1 (  = 0.4 and = 0.4) with a 
square pore: (a) h/2  = 0.1, (b) h/2  = 0.2, and (c) h/2  = 0.3. 

 

As before the displacement is larger near  (x, y) = (h/2, 0) and smaller near (x, y) = (0, h/2) due to 
different magnitudes of the traction forces. It should be noted that the displacement near the line 
y=x is the smallest because the solid region aroud that expands significantly as it gets farther 
from the origin.  
 

- For solid material type 2 (  = 0.8 and = 0.4) the traction force acting the interface is  t 
= (1.0, 0) at (x, y) = (h/2, 0) and t = (0, 0.2) at (x, y) = (0, h/2) so that t at (x, y) = (h/2, 0) 
is five times larger than t at (x, y) = (0, h/2). The displacement for various h/2  values is 
as shown in Fig. 4. 

- (a) 
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(b) 

-  (c) 
Fig. 4. Solid displacement in a unit cell made of Material 2 (  = 0.8 and = 0.4) with 
a square pore: (a) h/2  = 0.1, (b) h/2  = 0.2, and (c) h/2  = 0.3. 

 

The displacement pattern is to a certain extent similar to that for the case of circular pore in 
the sense that the interface in the region close to (x, y) = (h/2, 0) shows larger displacement 
than that in the region close to (x, y) = (0, h/2). The inward movement against the traction 
force near (x, y) = (0, h/2) appears much weakened as compared to the case of circular pore 
due to flat shape of the interface.  

 
Effective Macroscale Elastic Coefficients and Pressure Coefficients 

The effective elastic coefficients in (5) specifically are written as 

,  

,      (Eq. 9) 
where  n’ is the porosity of the medium and the following are used: 
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, ,      (Eq. 10) 
(1) Effective Elastic Coefficients 

The coefficients  for a medium with Material 1 with circular and square pore 
geometries are shown in Fig. 5. First they decrease with r0  or h/2 because the solid fraction 
decreases with increasing  r0  or h/2. Second, they appear to be slightly larger for a medium 
with circular pore than a medium with square pore because the solid fraction is a bit larger 

for a medium with circular pore. Third, is larger than because along z-
direction the geometry is preserved whereas along x- and y-directions the deformation of the 

pore geometry takes place rather easily. Fourth,  and are very close to each 

other in both pore geometries. Last, is larger than  and  because 
the deformation in the transverse direction is induced more easily that the longitudinal 
direction. 

 
Fig. 5. The effective elastic coefficients for Material 1 with circular and square pores. 
 
The coefficients  for a medium with Material 2 are shown in Fig. 6. The comments 
made for Material 1 are, in general, equally valid here. But, due to the difference in the 
Lame’s constants, the values of  are higher for Material 2.  
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Fig. 6. The effective elastic coefficients for Material 2 with circular and square pores. 
 

(2) Effective Pressure Coefficients 

From (6) the effective pressure coefficients are  

, where     (Eq. 11) 

The variation of and for Material 1 with r0  and  h/2 is shown in Fig. 7 and that for 
Material 2 is shown in Fig. 8. The values increase steadily with r0  or h/2 because the fluid 
domain increases and hence the fluid pressure acting on the interface increases too. In the 
two-dimensional pore geometry considered here, the fluid pressure change cause by 
medium deformation in xy-plane is clearly very large in x- and y-directions whereas it is 

small in z-direction along which the pore channel is infinite. Hence becomes larger 

than . The pressure coefficients are larger for a medium with square pore that that with 
circular pore because, in the case of circular pore the compression effect on the interface is 
quickly spreading out in the solid domain due to the fanning effect into the solid. 
The discrepancy of the pressure coefficients between Material 1 and Material 2 is such that 
the coefficients are larger for Material 2 as s result of the difference in the Lame’s constants.  
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Fig. 7. The effective pressure coefficients for Material 1 with circular and square pores. 
 

 
Fig. 8. The effective pressure coefficients for Material 2 with circular and square pores. 
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CONCLUSIONS 
From the calculations of the solid displacements and the effective macroscale coefficients(the 
elastic coefficients and the pressure coefficients) for a porous medium with circular or square 
pore geometries the following conclusions are drawn. 

 

1. The elastic coefficients decreases as the porosity increases due to the reduction of the solid 
domain that resists the traction force acting on the interface between the solid and fluid regions. 

2. The elastic coefficient along the pore axis( ) is larger that those in the pore cross-

section( ) as a consequence of the geometrical characteristics. 

3. The longitudinal elastic coefficient( ) is larger than transverse ones(  and 

). 

4. The elastic coefficients are larger for a medium with larger  which signifies the 
compressional strength of the solid region. 

5. The pressure coefficients increase as the porosity increases due to increasing interface area on 
which the fluid pressure acts. 

6. The pressure coefficient in the pore cross-section( ) is larger than that along the pore 

axis( ) due to increased resistance of the solid against the fluid pressure. 

7. The pressure coefficients are larger for a medium with larger as in the case of the elastic 
coefficients. 

 

ACKNOWLEDGEMENT 
This research was supported by the National Research Foundation of Korea (Grant: NRF-
2012R1A1A2041369) funded by the Ministry of Education, Science and Technology. 
 

REFERENCE 
1. Lee, C.K. (2004), “Flow and deformation in poroelastic media with moderate load and weak 
inertia. Proc. Roy. Soc. London A460, 2051-2087. 
2.  Goodman, R.E. (1989), Introduction to Rock Mechanics, 2nd ed., John Wiley & Sons. 
 

13 
 


	ABSTRACT
	INTRODUCTION


