
WM2014 Conference, March 2- 6, 2014, Phoenix, Arizona, USA 

 
Permeability and Dispersion Coefficients in Rocks with Fracture Network - 14156 

 

C.K. LEE, M.Z. Htway* 
Handong Global University 

3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 
Republic of Korea 

 

S.P. Yim 
Korea Atomic Energy Research Institute 
P.O. Box 150, Yusong, Daejon, 305-600 

Republic of Korea 

 

ABSTRACT 

Fluid flow and solute transport are considered for a rock medium with a fracture network with regard to 
the effective permeability and the dispersion coefficients. To investigate the effects of individual fractures 
a three-fracture system is chosen in which two are parallel and the third one connects the two at different 
angles. Specifically the micro-cell boundary-value problems (defined through multiple scale analysis) are 
solved numerically by using finite elements to calculate the permeability and dispersion coefficients. It is 
shown that the permeability depends significantly on the pattern of the fracture distribution and the 
dispersion coefficient is influenced by both the externally imposed pressure gradient (which also reflects 
the flow field) and the direction of the gradient of solute concentration on the macroscale. 

INTRODUCTION 

Rock media are in many cases characterized by the existence of fracture network in which individual 
fractures are aligned in various directions. The fluid flow in a rock medium with fracture network driven 
by externally imposed pressure gradient is therefore dependent on the fracture arrangement in the network. 
The dependence of the flow through fractured medium is characterized by the effective permeability of 
the medium (usually known as the hydraulic conductivity and is not equal to the intrinsic permeability 
which depends only on the geometric and fab1rication properties of the medium.) 

Solute matter released in the medium is transported through fracture network by existing flow field. The 
spreading of solute is influenced by both the molecular diffusion and hydrodynamic dispersion 
(consequence of Taylor dispersion due to non-uniform fluid velocity distribution in the fracture). The 
spreading pattern is also strongly affected by the arrangement of the fractures.  

For effective management of the underground repository located in a rock medium with fracture network 
it is important to evaluate the characteristics of both the permeability and the solute transport. In this 
study, the process of fluid flow and solute transport through a macroscale medium with fracture network 
is investigated with emphasis on the effective macroscale coefficients: the permeability and the dispersion 
coefficients.  

The theoretical framework is based on the homogenization theory which systematically combines the 
processes on the microscale and deduces the governing equations and the effective coefficients on the 
macroscale [1]. Under two basic assumptions, (i) the periodicity of the medium structure on the 
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microscale with periodic length l and (ii) the periodicity of all variables and material properties. The 
periodicity assumption is not very restrictive because the distributions and arrangements over the periodic 
length are quite arbitrary. 

The fracture network used in the present study is composed of three fractures. Two fractures are parallel 
to each other and are aligned along 45-deg counterclockwise from the horizontal direction. The third one 
connects the parallel fractures at different angles. Specifically three cases are considered: (i) the 
connecting fracture is normal to the parallel fractures (normal), (ii) the connecting fracture is nearly 
horizontal (forward), and (iii) the connecting fracture is nearly vertical (backward). 

 

THE GOVERNING RELATIONS ON THE MICROSCALE 
The porous medium is assumed to be composed of the matrix (Ωs) of solid rock phase and the fluid phase 
(Ω f) which constitute the fracture network. Each phase is assumed to be connected throughout the porous 
medium. Fluid flow is induced by macroscopically imposed pressure gradient over the medium. 

Without display of explicit formulas the basic governing relations and the boundary conditions that must 
be satisfied in the fluid domain Ω f are desribed.  

The basic governing equations on the microscale in the fluid phase (Ω f) are the conservation of mass, the 
conservation of momentum and the conservation of solute matter[1].  

On the boundary Γ  between the solid and fluid, the liquid velocity vanishes and the solute flux along the 
normal direction should vanish.  

The governing equations and the boundary conditions are normalized by using the representative scales 
(refer to [1] for details). An important dimensionless parameter appears in the analysis of solute transport: 
the Pecet number that signifies the relative importance of the convective solute transfer to the diffusive 
solute transfer. 

 
MULTIPLE SCALE ANALYSIS 
The distinguishing features of the multiple scale perturbation analysis are briefly summarized. 
Recognizing the scale disparity in the process of fluid flow and solute transport, two distinct length scales 
are introduced: the microscale (the fast scale which is equivalent to the representative elementary volume 
in the traditional treatment of the process) and the macroscale (the scale over which the processes of 
interest take place from the viewpoint of reservoir engineering and management). 

The variables are expanded as perturbation series in the following small parameter  

         (Eq. 1) 

in which l is the microscale length and l' the macroscale length. Upon expansion of the governing 
equations and boundary conditions, the microscale boundary-value problems are investigated separately 
according to the respective order of є and,  through volume-averaging over the micro-cell, the effective 
macroscale governign equations are derived.  

In the process of the multiple scale analysis, several canonical micro-cell boundary-value problems are 
defined whose solutions are used in the calculation of the effective medium properties (effective 
macroscale coefficients) by averaging over the micro-cell volume. 
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THE MICRO-CELL  BOUNDARY-VALUE PROBLEMS 
(1) For fluid flow the following Stokes problem in dimensionless variables is defined: 

      (Eq. 2) 
In the above, K=Kij and S=Sj are the fluid velocity in the i-th direction and the fluid pressure variation in 
the micro-cell due to externally imposed pressure gradient in the j-th direction.  

The macroscale permeability tensor of rank two is then given by the micro-cell volume average of K as 

        (Eq. 3) 

and the Darcy’s law is given as  

        (Eq. 4) 

where the left-hand side is the seepage velocity and the primed gradient is the derivative of the fluid 
pressure over the macroscale. This serves as the momentum equation on the macroscale. 

 
(2) The solute transport process gives, in the process of multiple scale analysis, the following 

boundary-value problem: 

 (Eq. 5) 

where  is the fluid velocity fluctuation about its mean over the micro-cell average, Pe is the Peclet 
number that signifies the importance of the convective solute transfer relative to the diffusive solute 
transfer, and M=Mj is the solute concentration in the fracture relative to the average concentration caused 
by the macroscale concentration gradient in the j-th direction. 

The effective macroscale dispersion tensor is given by the following volume average 

    (Eq. 6) 

where n’ is the porosity of the medium, δij is the Kronecker delta, and summation over the repeated index 
k is assumed. 
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THE FRACTURE GEOMETRIES AND NUMERICAL CALCULATION 
(1) The geometries of fracture network used in the present study to calculate the permeability and the 

dispersion coefficients are shown in Fig. 1 (a) – (c)  and in Fig. 2 (a) – (c) [the geometries of Fig. 1 and 2 
are identical] in which the velocity fields are also shown. 

(a) 

(b) 

(c) 

Fig. 1. Three different types of fracture network: (a) Backward, (b) Normal, and (c) Forward. The 
macroscale pressure gradient is in the horizontal (x-) direction. 
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(a) 

(b) 

(c) 

Fig. 2. Three different types of fracture network: (a) Backward, (b) Normal, and (c) Forward. The 
macroscale pressure gradient is in the vertical (y-) direction. 
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RESULTS AND DISCUSSION 
Two micro-cell boundary-value problems defined above, i.e., the Stokes problem for flow field and the 
convective diffusion problem for solute concentration were solved by using two-dimensional finite 
elements. Specifically quadratic basis function and linear basis function were used for the Stokes problem 
and quadratic basis function was used for the calculation of Mx and My in the convective diffusion 
problem. The details of numerical implementation are omitted. 
 

Flow field in the fracture network 

The results of flow field calculation are shown in Fig. 1 for the case of the macroscale pressure gradient in 
the horizontal (x-) direction and Fig. 2 for macroscale pressure gradient in the vertical (y-) direction. 
Because of the difference of the macroscale pressure gradient the flow direction in the third (connecting) 
fracture is from the left to the right in the case of the horizontal (x-) direction pressure gradient and is 
from the right to the left in the case of the vertical (y-) direction pressure gradient. The flow pattern in the 
parallel fractures is from the left to the right in both cases which conform with the pressure gradient 
direction. 

Various meshes were tested to examine the convergence of the permeability (volume-averaged flow 
intensity defined above) with primary emphasis on the effect of refining discretization across the fracture. 
The results for the case of horizontal (x-) direction macroscale pressure gradient are summarized in Table 
I in which the convergence pattern is displayed for progressively refined spacing (Ny increasing). 
 

Table I. Convergence pattern of the effective permeability for three different types of fracture networks. 

 
Three Fractures (backward) 

Ny Kxx Kyx Kyy Kxy 
2 2.2103E-05 1.8536E-05 3.3769E-05 1.8536E-05 
4 2.2069E-05 1.8538E-05 3.3819E-05 1.8538E-05 
6 2.2040E-05 1.8531E-05 3.3813E-05 1.8531E-05 
8 2.2017E-05 1.8526E-05 3.3803E-05 1.8526E-05 

 
Three Fractures (normal) 

Ny Kxx Kyx Kyy Kxy 
2 2.8434E-05 1.4172E-05 2.8491E-05 1.4172E-05 
4 2.8507E-05 1.4190E-05 2.8541E-05 1.4190E-05 
6 2.8522E-05 1.4192E-05 2.8546E-05 1.4192E-05 
8 2.8526E-05 1.4192E-05 2.8545E-05 1.4192E-05 

 
Three Fractures (forward) 

Ny Kxx Kyx Kyy Kxy 
2 3.3653E-05 1.8478E-05 2.2140E-05 1.8478E-05 
4 3.3787E-05 1.8509E-05 2.2093E-05 1.8509E-05 
6 3.3796E-05 1.8510E-05 2.2062E-05 1.8510E-05 
8 3.3790E-05 1.8509E-05 2.2037E-05 1.8509E-05 
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The reason for examining the convergence with Ny is that the velocity distribution shows significant 
variation across the fracture. It is seen that the convergence is surprisingly satisfactory when Ny becomes 
8 (i.e., there are 8 node spacings (9 nodes) across each fracture). 

The permeability <Kxx>, when the pressure gradient is in the horizontal (x-) direction, increases as the 
connecting fracture changes from the backward through normal to the forward because the connecting 
fracture is more and more aligned with the pressure gradient direction. On the other hand, the 
permeability <Kyx> does not show any consistent trend with varying orientation of the connecting 
fracture. 

The permeability <Kyy>, when the pressure gradient is in the vertical (y-) direction, decreases as the 
connecting fracture changes in the same fashion as above since the blockage effect of the connecting 
fracture increases. As in the case of horizontal (x-) direction pressure gradient, <Kxy> does not show any 
consistent trend. 

However, it is noted that the symmetry relation <Kxy> = <Kyx> is always satisfied. 
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Mx and My fields in the fracture network 

The distribution of scalar field Mx and My is displayed in Fig 3 in the case of horizontal(x-) direction 
pressure gradient (θ=0°) for various Peclet numbers(Pe) ranging from 0 (pure diffusion case) upto 100. 
As Pe increases the extent of variation of Mx and My becomes larger indicating that the dispersion tensor 
increases. 
 

   

  

  

Fig. 3. Distributions of Mx and My for normal fracture (the connecting fracture is normal to the parallel 
fractures) for Pe (Peclet number)=0, 1, 10, 20, 50, 100.  
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Dxx for arbitrary pressure gradient direction over the fracture network 

 Calculated dispersion coefficient Dxx for the case of normal fracture, the dispersion coefficient in 
the x-direction when the macroscale concentration gradient is the x-direction, is shown in Fig. 4 for 
various directions of the macroscale pressure gradient. The angle θ changes from 0° (x-direction pressure 
gradient) to 150° counterclockwise.  
 
 

 

 

 
Fig. 4. Variation of Dxx with Peclet number for various directions of the macroscale pressure gradient. 
The angle θ is measured from the horizontal direction counterclockwise. 
 
 
 Clearly Dxx increases with Pe since the importance of convection increases with Pe which means 
that, for the same molecular diffusion coefficient and medium geometry, Pe increases with the flow 
intensity thereby enhancing the velocity gradient across the fractures and increased spreading of solute 
matter in the medium.  

However because of the alignment of the fractures the variation of Dxx, in this case, increases with θ upto 
θ = 50° and then decreases in the range of θ = 50° and θ = 120° and then increases again with θ. This 
implies that the variation of Dxx with θ is strongly dependent on the distribution of fractures in the 
medium.   
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CONCLUSIONS 
From the calculations of the permeability and dispersion coefficients for solute in a rock medium with a 
fracture network the following conclusions are drawn. 

1. The permeability of fractured medium depends on the primary orientation of the fracture network and 
is influenced by the connecting fractures in the medium. 

2. The cross permeability, e.g. permeability in the direction normal to the direction of the external 
pressure gradient, is rather insensitive to the orientation of the fracture network.  

3. Calculation of permeability is most efficiently achieved with optimal discretization across individual 
fractures and is rather insensitive to the discretization along the fracture. 

4. The longitudinal dispersion coefficient Dxx of a fractured medium depends on both the macroscale 
concentration gradient and the direction of the flow (pressure gradient). Hence both features must be 
considered when investigating solute transport in a fractured medium. 
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