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ABSTRACT

Component level and system level abstraction of detailed computational geologic repository models
have resulted in four rapid computational models of hydrologic radionuclide transport at varying
levels of detail. Those models are described, as is their implementation in Cyder, a software li-
brary of interchangeable radionuclide transport models appropriate for representing natural and
engineered barrier components of generic geology repository concepts. A proof of principle demon-
stration was also conducted in which these models were used to represent the natural and engineered
barrier components of a repository concept in a reducing, homogenous, generic geology. This base
case demonstrates integration of the Cyder open source library with the Cyclus computational
fuel cycle systems analysis platform to facilitate calculation of repository performance metrics with
respect to fuel cycle choices.

INTRODUCTION

Radionuclide containment behavior of a geologic repository is a function of spent fuel and high
level waste composition, which varies among alternative fuel cycles. For this reason, a generic
disposal model capable of integration with a systems analysis framework is necessary to illuminate
performance distinctions of candidate repository geologies, designs, and engineering components in
the context of fuel cycle options.

A generic repository model appropriate for systems analysis must emphasize modularity and speed
while providing modeling options at various levels of detail. Sensitivity analyses and abstraction
efforts conducted to develop the models described in this work sought to capture the dominant
physics of detailed repository behaviors so that abstracted models can be robustly and flexibly
implemented in the Cyder disposal environment library without sacrificing the simulation speed
required by the Cyclus fuel cycle simulator.

MODEL INTERFACES

The interfaces between the models are essential to the understanding of the models themselves.
The interfaces define boundary conditions in a number of forms based on information available
internally to the component implementation.

In a saturated, reducing environment, contaminants are transported by dispersion and advection.
It is customary to define the combination of molecular diffusion and mechanical mixing as the
dispersion tensor, D, such that the mass conservation equation becomes [1, 2, 3]:

J = Jdis + Jadv

= −θ(Dmdis + τDm)∇C + θvC

= −θD∇C + θvC
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which, for uniform flow in k̂, is

=
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)
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)
k̂, (Eq. 1)

where

Jdis = Total Dispersive Mass Flux [kg/m2/s]

Jadv = Advective Mass Flux [kg/m2/s]

τ = Toruosity [−]

θ = Porosity [%]

Dm = Molecular diffusion coefficient [m2/s]

Dmdis = Coefficient of mechanical dispersivity[m2/s]

D = Effective Dispersion Coefficient [m2/s]

C = Concentration [kg/m3]

v = Fluid Velocity in the medium [m/s].

Solutions to this equation can be categorized by their boundary conditions and those boundary
conditions serve as the interfaces between components in the Cyder library of nuclide transport
models.

r = 0 r = rwf r = rwf r = rwp
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−θD ∂C
∂z

∣∣∣
rwf
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Figure 1: The boundaries between components (in this case, waste form (wf) and waste package
(wp) components) are robust interfaces defined by Source Term, Dirichlet, Neumann, and Cauchy
boundary conditions.

In addition to a specified source term (the zeroth type boundary condition, perhaps), the first,
specified-head or Dirichlet type boundary conditions define a specified species concentration on
some section of the boundary of the representative volume,

C(r⃗, t) = C0(r⃗, t) for r⃗ ∈ Γ. (Eq. 2)
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The second type, specified-flow or Neumann type boundary conditions describe a full set of con-
centration gradients at the boundary of the domain,

∂C(r⃗, t)

∂r
= θDJ⃗(t) for r⃗ ∈ Γ (Eq. 3)

where

r⃗ = position vector

Γ = domain boundary

J⃗(t) = solute mass flux [kg/m2 · s].

The third, head-dependent mixed boundary condition or Cauchy type, defines a solute flux along
a boundary,

−D
∂C

∂z
+ vzC = vzC(r⃗, t) for r⃗ ∈ Γ. (Eq. 4)

The spatial concentration throughout the volume is sufficient to fully describe implementation of
the following nuclide transport models within Cyder. This is supported by the implementation in
which vertical advective velocity is uniform throughout the system and in which parameters such as
the dispersion coefficient are known for each component. Since this is the case in Cyder, description
of the Dirichlet condition is sufficient to fully define calculation of the Neumann and Cauchy type
conditions.

DESCRIPTION OF THE MODELS

The results of this work consist of four models that are the product of an abstraction effort with
more detailed tools. The analytic models modified by abstraction and implemented in Cyder include
a degradation rate model, a mixed cell model, a response function model, and a one-dimensional
solution (Leij et. al [4]) to the advection-dispersion equation.

Degradation Rate Radionuclide Transport Model

The degradation rate model, simulating the fractional degradation of the material containment
properties, is the simplest of implemented models and is most appropriate for simplistic waste
package failure modeling.

The materials that constitute the engineered barriers in a saturated repository environment degrade
over time. The implemented model of this nuclide release behavior is based solely on a fractional
degradation rate. This model incorporates the source term made available on the inner boundary
into its available mass and defines the resulting boundary conditions at the outer boundary as
solely a function of the degradation rate of that component.

This results in the following expression for the mass transfer, mij(t), from cell i to cell j at time t :

3



WM2013 Conference, February 24-28, 2013, Phoenix, Arizona, USA

ṁij(t) = fi(· · · )mi(t) (Eq. 5)

where

ṁij = the rate of mass transfer from i to j [kg/s]

fi = fractional degradation rate in cell i [1/s]

mi = mass in cell i [kg]

t = time [s].

For a situation as in Cyder and Cyclus, with discrete timesteps, the timesteps are assumed to be
small enough to assume a constant rate mij over the course of the timestep. The mass transferred
between discrete times tn−1 and tn is thus a simple linear function of the transfer rate in (Eq. 5),

mn
ij =

∫ tn

tn−1

ṁij(t
′)dt′

= fi(· · · )mn−1
i (tn − tn−1) . (Eq. 6)

The concentration boundary condition must also be defined at the outer boundary to support
parent components that utilize the Dirichlet boundary condition. For the degradation model,
which incorporates no diffusion or advection, the concentration, Cij at the boundary between cells
i and j is the average concentration in the saturated pore volume,

Cn
ij =

mn
i

Vvi
(Eq. 7)

=
solute mass in cell i

void volume in cell i
.

For the case in which all engineered barrier components are represented by degradation rate models,
the source term at the outermost edge will be solely a function of the original central source and
the degradation rates of the components.

To support parent components that utilize the Cauchy boundary condition, the degradation model
assumes that the fluid velocity is constant across the cell as is the concentration. Thus,

−θiDzz
∂C

∂z
k̂ + θivzCk̂ = θi0v0C0k̂

θi = porosity in cell i [−]

Dzz = k̂ component diffusion tensor component in k̂ direction [m2/s]

Ci = concentration in cell i [kg/m3]

vz = velocity in k̂ direction [m/s]

reduces to

θni v
n
zC

n
i = θn−1

i vn−1
z Cn−1

i . (Eq. 8)
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Mixed Cell Volume Radionuclide Transport Model

Slightly more complex and suited to representing waste form and buffer components, the mixed cell
model incorporates solubility limited, congruent release under the influence of elemental solubility
limits, sorption, diffusive behavior, and advective behavior. Abstraction results concerning the
transition between primarily diffusive and primarily advective transport regimes were used for
benchmarking and to iteratively improve accuracy in the development of this model.

A main nuclide transport component model used in this work is a mixed cell component module
incorporating solubility and sorption effects as well as engineered material dissolution.

A graphical representation of the mixed cell model is given in Figures 2 and 3.

Intact matrix

and contained

contaminants}
Figure 2: The control volume contains an intact
material matrix. Contaminants are unavailable to
neighboring subcomponents until dissolution has
begun.

Available 

contaminants

and pore water

Precipitated 

solids

Intact matrix

and contained

contaminants

}

}
}

Figure 3: Once dissolution begins, the control vol-
ume contains a partially dissolved material ma-
trix, contaminated pore water, and degraded and
precipitated solids.

After some time degrading, the volume of free fluid can be expressed as

Vff (tn) = θVT

∫ tn

t0

f(· · · )dt. (Eq. 9)

The volume of the intact matrix can be expressed as

Vim(tn) = VT − VT

∫ tn

t0

f(· · · )dt. (Eq. 10)

Finally, the volume of the degraded and precipitated solids can be expressed as

Vps(tn) = (1− θ)VT

∫ tn

t0

f(· · · )dt. (Eq. 11)
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This model assumes that all net influx to the cell enters the free fluid rather than the intact matrix.
The total volumetric contaminant concentration in the intact matrix, can be expressed as

Cim(tn) = C0 (Eq. 12)

=
m0

Vim(t0)
(Eq. 13)

where

m0 = total initial mass.

The resulting contaminant mass in the intact matrix at time tn is

mim(tn) = C0Vim(tn)

= C0VT

(
1−

∫ tn

t0

f(· · · )dt
)
. (Eq. 14)

The contaminant mass in the free fluid is just the initial pore water concentration times the free
fluid volume plus the time integral of net influx to the cell such that

CffT (tn) =

[
C0 +

∫ tn
t0

ṁi(t
′)dt′

Vff (tn)

]
(Eq. 15)

and

mffT (tn) = Cff (tn)Vff (tn)

=

[
C0 +

∫ tn
t0

ṁi(t
′)dt′

Vff (tn)

]
Vff (tn)

= C0Vff (tn) +

∫ tn

t0

ṁidt
′. (Eq. 16)

It is limited, however, by both solubility limitation and sorption.

Sorption

The mass in both the free fluid and in the intact matrix exists in both sorbed and non-sorbed
phases. The relationship between the sorbed mass concentration in the solid phase (e.g. the pore
walls),

s =
mass of sorbed contaminant

mass of total solid phase
(Eq. 17)
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and the dissolved liquid concentration,

c =
mass of dissolved contaminant

volume of total liquid phase
(Eq. 18)

can be expressed by a number of isotherm models.

In this model, sorption is taken into account throughout the volume. In the intact matrix, the
contaminant mass is distributed between the pore walls and the pore fluid by sorption. So too,
contaminant mass released from the intact matrix by degradation is distributed between dissolved
mass in the free fluid and sorbed mass in the degraded and precipitated solids.

To solve for the boundary conditons in this model, the amount of non-sorbed contaminant mass
in the free fluid must be found. This value, mffl, can be expressed in terms of the total degraded
contaminant mass and the contaminant mass in the degraded and precipitated solid,

mffl = mffT −mpsc. (Eq. 19)

The mass of contaminant sorbed into the degraded and precipitated solids can be found using a
linear isotherm model [1], characterized by the relationship

si = Kdici (Eq. 20)

where

si = the solid concentration of isotope i [kg/kg]

Kdi = the distribution coefficient of isotope i[m3/kg]

ci = the liquid concentration of isotope i [kg/m3].

Thus, from (Eq. 17),

si,ps =
contaminant mass in degraded and precipitated solids

total mass of degraded and precipitated solids

=
mpsc

mpsT

=
mpsc

mpsm +mpsc

where

mpsm = noncontaminant mass in degraded and precipitated solids [kg]

= ρbVps

mpsc = contaminant mass in degraded and precipitated solids [kg]

ρb = bulk (dry) density of the medium [kg/m3].

(Eq. 21)
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The following expression results, giving contaminant mass in the degraded and precipitated solids
in terms of the sorption coefficient,

mpsc = spsmpsT

= KdCfflmpsT

=
KdmfflmpsT

Vff

=
Kd

Vff
(mffT −mpsc)mpsT

=
Kd

Vff
(mffT −mpsc)(mpsm +mpsc)

=
Kd

Vff
(mffTmpsm −mpscmpsm +mffmpsc −m2

psc)

=
Kd

Vff
(mffTmpsm + (mffT −mpsm)mpsc −m2

psc)

which, rearranged, becomes

0 = m2
psc +

(
−mffT +mpsm +

Vff

Kd

)
mpsc −mffTmpsm

and is solved using the quadratic formula, such that

mpsc =
mffT −mpsm − Vff

Kd

2
±

√(
−mffT +mpsm +

Vff

Kd

)2
− 4mffTmpsm

2

which, again rearranged, becomes

=
1

2

(
mffT −mpsm −

Vff

Kd

)

± 1

2

√
m2

ffT + 2mffT

(
mpsm −

Vff

Kd

)
+

(
mpsm +

Vff

Kd

)2

. (Eq. 22)

Plugging (Eq. 22) into (Eq. 19) results in the following expression for mffl in terms of known
quantities

mffl = mffT − 1

2

(
mffT −mpsm −

Vff

Kd

)

∓ 1

2

√
m2

ffT + 2mffT

(
mpsm −

Vff

Kd

)
+

(
mpsm +

Vff

Kd

)2

. (Eq. 23)

Solubility

In addition to engineered barriers, contaminant transport is constrained by the solubility limit [5],

ms,i ≤ VwCsol,i, (Eq. 24)
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where

ms,i = solubility limited mass of isotope i in volume Vw[kg]

Vw = volume of the solution [m3]

Csol,i = solubility limit, the maximum concentration of i [kg/m3].

The desired boundary conditions can be expressed in terms of mffl. First, the Dirichlet boundary
condition is

C(x, y, z, t) =
mffl(t)

Vff (t)
∀(x, y, x) ∈ Γ. (Eq. 25)

From this boundary condition in combination with global advective velocity data, all other bound-
ary conditions can be found.

Lumped Parameter Radionuclide Transport Model

The response function model implemented interchangeable piston flow, exponential, and dispersion
response functions [6]. For systems in which the flow is sufficiently slow to be assumed constant
over a timestep, it is possible to model a system of volumes as a connected lumped parameter
models (Figure 4).

Cin0 Cout0 = Cin1 Cout1 = Cin2 Cout2 = Cin3 Cout3

Figure 4: A system of volumes can be modeled as lumped parameter models in series.

The method by which each lumped parameter component is modeled is according to a relationship
between the incoming concentration, Cin(t), and the outgoing concentration, Cout(t),

Cout(t) =

∫ t

−∞
Cin(t

′)g(t− t′)e−λ(t−t′)dt′ (Eq. 26)

equivalently

Cout(t) =

∫ ∞

0
Cin(t− t′)g(t′)e−λt′dt′ (Eq. 27)

where

t′ = time of entry [s]

t− t′ = transit time [s]

g(t− t′) = response function, a.k.a. transit time distribution[−]]

λ = radioactive decay constant, 1 to neglect[s−1].
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Selection of the response function is usually based on experimental tracer results in the medium
at hand. However, some functions used commonly in chemical engineering applications [6] include
the Piston Flow Model (PFM),

g(t′) = δ(t′ − tt)) (Eq. 28)

the Exponential Model (EM)

g(t′) =
1

tt
e
− t′

tt (Eq. 29)

and the Dispersion Model (DM),

g(t′) =

(
Pe tt
4πt′

) 1
2 1

t′
e−

Pe tt

(
1− t′

tt

)2

4t′ , (Eq. 30)

where

Pe = Peclet number for mass diffusion [−]

tt = mean tracer age [s]

= tw if there are no stagnant areas

tw = mean residence time of water [s]

=
Vm

Q

=
z

vz

=
zθe
q

in which

Vm = mobile water volume [m3]

Q = volumetric flow rate [m3/s]

z = average travel distance in flow direction [m]

vz = mean water velocity[m/s]

q = Darcy Flux [m/s]

θe = effective (connected) porosity [%].

The latter of these, the Dispersion Model satisfies the one dimensional advection-dispersion equa-
tion, and is therefore the most physically relevant for this application. The solutions to these for
constant concentration at the source boundary are given in [6],

C(t) =


PFM C0e

λtt

EM C0
1+λtt

DM C0e
Pe
2

(
1−

√
1+

4λtt
Pe

)
.

(Eq. 31)
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One Dimensional Permeable Porous Medium Radionuclide Transport Model

Finally, abstraction results informed modifications to the implementation of an analytic solution to
the one dimensional advection-dispersion equation with finite domain and Cauchy and Neumann
boundary conditions at the inner and outer boundaries, respectively.

Various solutions to the advection dispersion equation (Eq. 1) have been published for both the
first and third types of boundary conditions. The third, Cauchy type, is mass conservative, and
will be the primary kind of boundary condition used at the source for this model.

The conceptual model in Figure 5 represents solute transport in one dimension with unidirectional
flow upward (a conservative assumption) and a semi-infinite boundary condition in the positive
flow direction. The solution is given (Leij et. al, [4]) and described below.

∂C
∂z

∣∣
∞ = 0

C(z, 0) = Ci

−D ∂C
∂z

∣∣
z=0

+ vzC =

{
vzC0 t < t0

0 t > t0

∞z = 0

Figure 5: A one dimensional, semi-infinite model, unidirectional flow, solution with Cauchy and
Neumann boundary conditions

For the boundary conditions,

−D
∂C

∂z

∣∣
z=0

+ vzc =

{
vzC0 (0 < t < t0)

0 (t > t0)
, (Eq. 32)

∂C

∂z

∣∣
z=∞ = 0 (Eq. 33)

and the initial condition,

C(z, 0) = Ci, (Eq. 34)

the solution is given as

C(z, t) =
C0

2

[
erfc

[
L− vzt

2
√
DLt

]
+

1

2

(
v2z t

πDL

)1/2

e
−(L−vzt)

2

4DLt

− 1

2

(
1 +

vzL

DL
+

v2zt

DL

)
e

vzL
DL erfc

[
L− Vzt

2
√
DLt

] ]
. (Eq. 35)

DISCUSSION OF THE BASE CASE DEMONSTRATION

A base case simulation was conducted as a proof of principle demonstration of the modularity
and interchangeability of these models. The simplest of the contaminant transport models was
used to represent the natural and engineered barrier components of a repository concept. This
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concept consisted of a saturated clay environment. In this demonstration, the Cyder open source
library integrates with the Cyclus computational fuel cycle systems analysis platform in order to
calculate repository performance metrics with respect to candidate fuel cycle options. Thus, the
demonstration illuminates the suitability of Cyder’s interface for linking to other tools as well as
for use as a stand-alone radionuclide transport calculation engine.

The demonstration case is an empty software architecture in which to implement the physical
models. This demonstration has built and tested component module loading of models and data,
information passing between components represented by degradation rate nuclide transport models,
and database writing.

Results of unit tests and benchmarking efforts were positive as was a proof of principle base case
demonstration of the interface between these models. The base case demonstration has used the
degradation rate to represent nuclide transport through waste form, waste package, and buffer
components in a generic, isotropic, permeable porous geological medium with reducing geochemistry
as well as the near field. Expected degradation behavior and congruent release was observed in
unit testing.

Figure 6: Waste form, waste package, buffer, and far field components posess transport behavior
selected from available transport models, are parameterized by user data, and are loaded modularly
into a cohesive framework.

CONCLUDING REMARKS

The Cyder source code in which these models are implemented as well as associated documentation
are freely available to interested researchers and potential model developers. The application pro-
gramming interface to this software library is intentionally general, facilitating the incorporation
of the models presented here within external software tools in need of a multicomponent repository
model.

Furthermore, this work contributes to an expanding ecosystem of computational models available
for use with the Cyclus fuel cycle simulator. This hydrologic nuclide transport library, by virtue of
its capability to modularly integrate with the Cyclus fuel cycle simulator has laid the foundation
for integrated disposal option analysis in the context of fuel cycle options.
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