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ABSTRACT 

It is a universal requirement for characterization of radioactive waste, that the consignor shall 
calculate and report a Total Measurement Uncertainty (TMU) value associated with each of the 
measured quantities such as nuclide activity. For Non-destructive Assay systems, the TMU 
analysis is typically performed on an individual container basis. However, in many cases, the 
waste consignor treats, transports, stores and disposes of containers in groups for example by 
overpacking smaller containers into a larger container or emplacing containers into groups for 
final disposal.  

The current standard practice for container-group data analysis is usually to treat each container as 
independent and uncorrelated and use a simple summation / averaging method (or in some cases 
summation of TMU in quadrature) to define the overall characteristics and associated uncertainty 
in the container group. 

In reality, many groups of containers are assayed on the same system, so there will be a large 
degree of co-dependence in the individual uncertainty elements. Many uncertainty terms may be 
significantly reduced when addressing issues such as the source position and variability in matrix 
contents over large populations. The systematic terms encompass both inherently 
“two-directional” random effects (e.g. variation of source position) and other terms that are 
“one-directional” i.e. designed to account for potential sources of bias. 

An analysis has been performed with population groups of a variety of non-destructive assay 
platforms in order to define a quantitative mechanism for waste consignors to determine overall 
TMU for batches of containers that have been assayed on the same system.  
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INTRODUCTION 

All measurements have an inherent uncertainty associated with them. It is conventional to express 
the upper and lower bounds of reasonable knowledge of the variability on a given assay value (at a 
given confidence level) in terms of a “Total Measurement Uncertainty” (TMU) value. Standard 
practice is to report TMUs associated with each of the measured quantities such as nuclide activity 
or mass.  

For Non-Destructive Assay systems, the TMU analysis is typically performed on an individual 
container basis. Thus, the challenge of defining and bounding the uncertainty is treated in isolation 
for each assay, addressing only the uncertainty associated with a single measurement on an 
individual container.  

However, in many cases, waste consignors will treat, transport, store and dispose of their 
containers in groups. Examples of this practice are: overpacking smaller containers into a larger 
container, emplacing containers into groups for final disposal or grouping containers in specific 
sub-regions (e.g. cells or rooms) within an interim store or repository. 

The current standard practice for container-group data analysis is usually to treat each container as 
independent and uncorrelated and use a simple summation / averaging method (or in some cases 
summation of TMU in quadrature) to define the overall characteristics and associated uncertainty 
in the container group. 

In reality, many groups of containers are assayed in batches on the same system, so there will be a 
large degree of co-dependence in the individual uncertainty elements. Many uncertainty terms 
may be significantly reduced when addressing issues such as the source position and variability in 
matrix contents over large populations.  

An improved model of the group TMU term provides a useful mechanism for consignors to 
improve their knowledge of the total radiological contents of waste consignments that may 
potentially generate cost savings in storage and treatment of waste. 

GROUP TMU EVALUATION  

An analysis has been performed with population groups of a variety of non-destructive assay 
platforms in order to define a quantitative mechanism for waste consignors to determine overall 
TMU on a platform specific basis for groups of so-called ‘sibling’ containers that have been 
assayed over the same parent system over a given period of time.  
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Portable Drum Assay System 

Portable far-field High Resolution Gamma Spectroscopy (HRGS) assay is usually performed 
using a High Purity Germanium (HPGe) detector, a DigiDART™ multi-channel analyzer, and a 
laptop computer [1]. The system is deployed using a suitable universal cart such as the PSC 
TechniCART™. Figure 1 shows a typical arrangement. 

  

     
 

Fig. 1. Example of Portable Non-Destructive Assay System using Far-Field High Resolution 
Gamma Spectroscopy 

Neutron Assay of Large Boxes 

The SuperHENC system [2] (depicted in Figure 2) combines a high efficiency neutron assay with 
a high resolution gamma spectroscopy system in a single trailer for assay of drums and Standard 
Waste Boxes (SWBs) up to a maximum envelope of 138.4 cm wide by 94.0 cm high by 180.3 cm 
long. The neutron counter consists of arrays of He-3 detectors embedded in all six sides of the 
neutron counting chamber thus providing a high efficiency 4π neutron detector. The gamma 
spectrometer consists of a single High Purity Germanium (HPGe) detector and a turntable to allow 
viewing different sides of the SWB. The turntable also serves as a scale for weighing the SWB 
during the gamma measurement.  
 
The neutron assay chamber utilizes a six-sided arrangement of polyethylene moderated He-3 
detectors. The detectors are filled to ten atmospheres pressure and have various active lengths. The 
exterior of the neutron chamber is clad with eight inches of polyethylene to shield against exterior 
neutron sources. Passive neutron coincidence counting and multiplicity techniques [3] are used to 
quantify the Pu-240 effective (Pu-240e) mass content of the waste container. 
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The SuperHENC measures the Pu-240e content using passive neutron coincidence counting and 
calculates the total plutonium content combining the Pu-240e value with either Acceptable 
Knowledge (AK) or direct gamma measurement for the plutonium isotopic mass fractions and 
other radionuclides present. 
 

             
 

Fig. 2. Example of Standard Waste Box Assay System (SuperHENC) 

The neutron counter uses the Add-A-Source (AAS) method [4] for matrix correction and 
normalization. The AAS is a Cf-252 source attached to a TeleflexTM cable that travels under the 
neutron assay chamber, stopping at six pre-selected positions. When not in use, the source is 
retracted from the chamber and stored in a polyethylene pig. The software calculates the measured 
response to the AAS, compares this to a reference count and calculates the matrix correction 
factor. The normalization is a simple and quick check on the empty neutron chamber counting 
efficiency compared to a reference initial source measurement. 
  
The SuperHENC has, to date, been deployed at five locations in the United States Department of 
Energy (DOE) complex. A summary of the typical measurement uncertainty parameters [5] for 
operational SuperHENC systems is given in Table I. 

 
Table I. Typical Measurement Uncertainties for SuperHENC 

 
Measurement Uncertainty 

Component 
Uncertainty Range Uncertainty Type 

Statistical Variable (Pu-240e dependent) Random 
Matrix 3-18% (Matrix dependent) Systematic 

Source Geometry 2-14% (Matrix dependent) Systematic 
Calibration 1% Bias 
Background 0 - 15% (Pu-240e dependent)  Bias 

Multiplication 0 – 1.5% (Pu-240e dependent)  Bias 
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UNCERTAINTY MODEL 

Quantification of TMU usually involves defining systematic and statistical terms. The statistical 
terms are random and generally observe well behaved variance for large population groups. The 
systematic terms encompass both inherently “two-directional” random effects (e.g. variation of 
source position) and other terms that are “one-directional” i.e. designed to account for potential 
sources of bias (e.g. uncertainty in the activity of the calibration source, or bias in the weigh scale). 
These terms will behave differently over large groups with the random terms converging to zero 
and the bias terms remaining constant (assuming the bias terms to be constant with respect to 
time). 

Total Measurement Uncertainty ∆  is often expressed as a fraction of the reported nuclide 
activity by propagation of various error terms. A typical expression in given in Equation 1. 

  

                            ∆ ∆ ∆ ∆                            (Eq. 1) 

Where ∆  is the fractional uncertainty associated with random effects (counting statistics), 
∆  is the fractional uncertainty associated with systematic effects (for a given container) that 
are unbiased and ∆  is the fractional uncertainty associated with systematic effects (for a 
given container) that have a directional bias. 

Examples of unbiased systematic effects are variation in matrix contents, variation in source 
geometry and background correction uncertainty. This type of effect will vary in magnitude in 
each assay (positive and negative) and over multiple measurements the effects will cancel out.  

Examples of biased systematic effects are uncertainty in the calibration source activity and other 
calibration terms that will be constant in magnitude from one measurement to another (assuming 
the same calibration is used). This term does not cancel out when containers are grouped. 

In the case where the activities of all containers in the group have approximately the same size, the 
fractional TMU for a group of N containers, ∆   can be given by the expression shown in 
Equation 2. 

                           ∆ 
∑ ,

  

∆
∆                          (Eq. 2) 

Where ∆   is the fractional TMU in the summed activity (or mass) of the group,  , and 
,  is the random uncertainty in the ith container.  

In reality, the containers from a group tend to be randomly populated from a parent distribution 
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and will contain small, medium and high levels of activity. A log-normal distribution is often a 
good means to represent this population. In the log-normal distribution, it is the logarithm of the 
variable rather than the variable itself that is normally distributed. For example, two populations 
are shown in Figure 3 (drawn from experience with real waste containers).  

Log-normal distributions are usually characteristic of processes that are dependent on the product 
of multiple independent variables. This type of distribution is widely encountered in physical and 
biological sciences. Log-normal distributions are characterized by their “location” (μ) and “scale” 
(σ) parameters, so that if say mass (M) is log-normally distributed then ln(M) will have a normal 
distribution with mean of μ and standard deviation σ .  

The plutonium distribution (which is modeled in the standard waste boxes) has a location 
parameter, μ, equal to 1.2 (equivalent to median Pu mass, eμ , of 3.32 g) and scale parameter σ of 
1.2. A similar distribution is shown for uranium in drums where μ = 2.30 (i.e., median mass of 10 
g) and σ = 1.9. 

Note that if a distribution is log-normal then a normal distribution will be observed in the 
logarithmic term regardless of the logarithmic base used. In this example the natural logarithm was 
used, but these observations will hold equally true for, say, a base 10 logarithm with the only 
difference being that the respective location and scale parameters compared to natural logarithms 
would be multiplied by a simple factor, in the log-10 case by ln(10).  
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Fig. 3. Simulated Mass Distribution of Plutonium (for Standard Waste Boxes) and Uranium (for 
208 Liter Drums) 

In order to develop a general mathematical model of the group TMU term expressed in terms of 
the log-normal parameters and N, a computer simulation was created using Microsoft Excel 2007. 
In the simulation a Monte Carlo approach was a used whereby a group of N containers was 
populated at random with mass (M) values derived from the log-normal distribution using 
specified values of μ and σ. The model was run with N = {3, 10, 30, 100, 300, 1000}, μ was 
sampled from values ranging from 1-9 and σ was sampled (independently from μ) in discrete 
values from 0 to 4.  

For each iteration, the group fractional (unbiased) systematic TMU term ∆   was calculated 
for the population on N containers using Equation 3, which assumes that no covariance exists 
between the unbiased systematic uncertainty terms for the individual containers. 

                           ∆  ∆ 
∑   

 
 

                         (Eq. 3) 

The results of the modeling are shown as the data points plotted in Figure 4. In this model the 
individual systematic term, ∆   was set nominally to 20%. The plots show the group 
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systematic term plotted as a function of σ for various values of N (10, 100 and 1000 are shown). 
The model demonstrated that, for any given value of N and σ, a constant value was produced for 
the group systematic uncertainty term, when μ was sampled over the range stated above. It was 
therefore concluded, that the group systematic uncertainty term is dependent only on N and σ and 
that there is no dependence on μ.  

 

Fig. 4 Results of Monte Carlo Modeling of Group Systematic Uncertainty 

 

It is useful to define the “systematic uncertainty ratio” (Y) i.e. the ratio of the group systematic 
error ∆   to the individual container systematic error ∆   as shown in Equation 4. The 
Monte Carlo derived curves demonstrate that Y can be represented to a reasonable approximation 
as a “power of N” distribution with a simple functional dependence on σ as given in Equation 5. 

                                                    
∆ 

∆ 
                                     (Eq. 4) 

                   where                                                (Eq. 5) 

It can readily be seen that in the case where 0 then 
 
as expected, or in other words 

that where the population masses are evenly distributed then Equation 2 holds true. The curves that 
are generated by this model are illustrated in Figure 4, where it can be seen that the fit to the data 
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points is reasonable for values of N greater than 10. 

Now returning to the general case, where bias uncertainty is present, for a group of N containers 
with an distribution of masses (M) chosen from a parent that has a log-normal mass distribution 
with a scale parameter [i.e. standard deviation in ln(M)], of σ, then the TMU for the group (i.e. 
total TMU expressed as a fraction of total mass) can be represented by Equation 6. 

                         ∆  ∆ ∆                              (Eq. 6)               

In this expression it is assumed that the random uncertainty term diminishes to a negligible term 
for a large group of containers or in other words that the combined mass of the group is 
significantly greater than the system’s lower limit of detection. 

It can be seen that the first term on the right hand side of Equation 6 is equal to ∆ . 

Thus, as stated above, when population masses are evenly distributed the first term becomes 
∆

 and therefore, where the random error is negligible, Equation 2 reduces to Equation 6. 

The Y term is plotted as a function of σ in Figure 5 for various values of N. In reality, the scale 
parameter σ will normally range between 0.7 and 3.2, the latter value representing a practical 
upper limit for waste.   

 

Fig. 5 Systematic Uncertainty Factor (Y) for Various Populations 
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Uncertainty Model Parameters 

For the uncertainty, the different NDA systems were assumed to have measurement uncertainty 
terms given in Table II. This is based in on the typical performance of similar instruments [1, 5]. 

TABLE II. Measurement Uncertainty Model Parameters  

Measurement 
Uncertainty 

Drum Assay  
(e.g. Portable Gamma) 

Box Assay 
(e.g. SuperHENC) 

Random 1 gram U= 10% 1 gram Pu = 3% 
Systematic 40% 20% 

Bias 10% 5% 
 

Drum Assay Group TMU analysis 

The uranium mass in a hypothetical population of drums was sampled over 10,000 iterations using 
a mathematical model created in Microsoft Excel 2007 with a log-normal parent distribution. The 
“Load TMU” (for the Drum Assay System) was determined for (i) individual containers (ii) 
groups of 10 (iii) groups of 100 containers. The Load TMU is defined as the total TMU for the load 
divided the load total activity (or mass). For this assessment the groups were selected at random. 
Results are shown in Figure 6. Note how (i) random error in the single container diminishes with 
increasing mass, and (ii) the spread in the load uncertainty is reduced as the population size 
increases. 

 

Fig. 6. Load TMU for Various Load Sizes of 208-liter Drums 
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Box Assay Group TMU analysis 

The plutonium population was sampled (with the mathematical model described above) over 
10,000 iterations and a load TMU (for the Box Assay System) was determined for (i) individual 
containers (ii) groups of 10 (iii) groups of 100 containers. As with the drum analysis, the groups 
were selected at random. Results are shown in Figure 7. 

 

Fig. 7. TMU for Various Load Sizes of Standard Waste Boxes 

Group TMU Model Summary 

Results of the group TMU model (defined in Equation 6) are shown in Table III. These estimates 
for the group TMU are consistent with the individual random iterations plotted in Figure 6 and 
Figure 7. 

TABLE III. Group TMU Analysis 

Number in 
Group 

Drum Systematic 
Uncertainty 
Factor (Y) 

Drum TMU Box Systematic 
Uncertainty 
Factor (Y) 

Box TMU 

1 1.000 41.2% 1 20.6% 
10 0.546 24.0% 0.429 9.9% 
30 0.409 19.1% 0.286 7.6% 

100 0.298 15.6% 0.184 6.2% 
1000 0.163 11.9% 0.079 5.2% 
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CONCLUSIONS 

A model has been derived to allow the TMU term for a group of containers measured by 
Non-Destructive Assay to be estimated. This model requires only that the following information 
be available: 

• Population statistics for the parent distribution (or a representative sample of the parent 
distribution) such that the standard deviation (σ) in the logarithm distribution (also called 
the “scale parameter”) for the measured quantity may be calculated.  

• An estimate of the total unbiased fractional systematic uncertainty component for each 
assay (ΔSyst0) i.e. those components that will tend to cancel out over a large group 
(examples are matrix effects and source distribution terms). 

• An estimate of the magnitude of the total biased systematic uncertainty component for 
each assay (ΔBias0) i.e. those components that are constant from one measurement to 
another (the usually includes the calibration uncertainty terms). 

This model will be beneficial to waste consignors and experts involved in characterization of 
waste. Waste consignors can use the group based TMU model to assist in efficient and effective 
transport, sentencing or storage of waste (it may also be feasible to use the method retroactively on 
legacy data sets). This method will also be beneficial as guidance in the development of 
uncertainty reporting requirements for waste acceptance criteria. 
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