Application of SADA for 3D Subsurface Characterization and Suggested Approach for Volumetric Compliance with Decommissioning Dose Criteria

Robert Stewart, Ph.D.

Oak Ridge National Laboratory University of Tennessee

Waste Management Symposium, 2013 Phoenix, Arizona

Managed by UT-Battelle for the Department of Energy

Spatial Analysis & Decision Assistance

Geographic Information Science and Technology

- Freeware desktop application integrating environmental risk analytics, spatial modeling, and decision sciences (EPA, NRC, DOE)
- Embed risk assessment, uncertainty modeling, and downstream decision processes entirely within a spatial context.
- SADA is a collaboration between the University of Tennessee and ORNL

Footprint within the risk community

- 20,000+ users going back to 1998
- 90+ scientific and regulatory communications (e.g. journal articles, reports, web pages, theses, etc.
 - User group, workshops, conferences, international presence etc.

Managed by UT-Battelle for the Department of En

Geographic Information Science and Technology

GIS **Spatial Context** Area of Investigation 2D or 3D **Initial Sample Designs** Judgmental Random Simple Grid Standard Grid **Unaligned Grids** Search Grids MARSSIM **3D Search Data Collection** Data Management **Multiple Contaminants** Spatio-Temporal Referenced

Geographic Information Science and Technology=

Risk Based Screening

Radionuclides Chemical Biological Custom State Federal Site Specific Landuse, individual behaviors Database of 1000s of analytes

SADA integrates spatial modeling with risk

Nearest Neighbor Natural Neighbor Inverse Distance Ordinary Kriging Indicator Kriging Cokriging Imported Models

Managed by UT-Battelle for the Department of Energy

Geographic Information Science and Technology

Probability of Exceeding Acceptable Risk Limit

Certain

that propagates spatial uncertainty through the risk

Probability Maps Model Variance Maps Simulations

And quantifies uncertainty in the final decision

Cost Benefit Analytics

Built on risk-space models Permit what if's Quantify cost and *decision* risk reduction

Uncertair

Certain

Geographic Information Science and Technology

Managed by UT-Battelle for the Department of Energy

Secondary Sample Designs

Sample where model needs most support....

3D Subsurface Modeling

Subsurface Challenges

Geographic Information Science and Technology

- Exposure/DCGL values can be unclear
 - Groundwater contamination source is common
 - Direct exposure (construction, landscaping, removal)
- Sampling/Cleanup are more expensive
 - Subsurface is less accessible
 - Survey units in 3D might be difficult
- Complex geological/geophysical considerations
- Unable to "scan" the subsurface
 - No direct way to fill in the gaps
- "Bullet resistant" compliance check is at best difficult
- A detailed one-size-fits-all workflow is unlikely

Managed by UT-Battelle for the Department of Energy

GEM: Geospatial Extension to MARSSIM

Geographic Information Science and Technology

- A Geospatial Based Decision Framework for Extending MARSSIM Regulatory Principles Into the Subsurface (Google Trace + Title)
- Explores MARSSIM "basic principles" within a subsurface context with direct exposure scenarios in mind, implemented as a prototype in SADA (not publically available yet).

• **GEM Objectives**

- Create a comprehensive, DCGL & scale independent compliance rule/check
- Build on advanced geospatial modeling approaches instead classical statistical approaches that ignore spatial autocorrelation and oversimplify the challenge
- Use field detection data to increase sample space and support modeling.
- Implement geospatially informed sampling and remedial designs that mitigate uncertainty and efficiently lead to compliance.
- Ultimate goal is to propose a starting framework for subsurface that resonates with MARSSIM guidance - much work still remains.
- Increase the presence of advanced methods in regulatory guidance

GEM Regulatory Limit Rule

- The RLR is a continuous function specifying the acceptable limit as a function of geometry, volume, and depth.
- 3D subsurface radiological model scan
- Scan evaluates the probability that Mean_{EU} > Limit_{EU}
- Scan at all scales at all positions (ie survey unit delineation not required)

GEM: Geospatial Extension to MARSSIM

Geographic Information Science and Technology

- GEM compliance check is based on an empirically explicit geospatial compliance model that evolves a site conceptual model through the investigation into a high resolution representation.
- Built from a rich array of geostatistical methods that embrace correlation and integrate a variety of data types (e.g. field, lab)
- Built using "best practices" rather than hard coded steps

for the Department of Energy

Historical Site Assessment/Scoping

- A high resolution, numerically explicit, conceptual model is built in the historical site assessment phase.
- Expert judgment is expressed as a *level of concern* about contamination.

Characterization Phase

- Check and Cover sample design locates initial samples based on the CSM balancing suspect areas with those likely to be clean.
- Based on P-Median algorithm for optimal facility location.
- Initial sample size can be motivated by external factors but a Pmedian metric is available for determining the spatial efficiency each additional sample.
- Iterative sampling is preferred with tertiary sampling likely driven by situation specific needs.

Geostatistical Simulation

- Simulation produces multiple realizations of contamination.
- Integrates primary (e.g. lab) with secondary (e.g. core hole scan)
- Taken together produce a PDF describing concentration uncertainty
- PDF can be queried to produce the probability of exceedance.
- PDF is available at every scan location for every EU specification

Stochastic Conceptual Site Model

Geographic Information Science and Technology

- Processing realizations in this way produces the Stochastic Compliance Site Model (SCSM).
- The SCSM is evolved over the investigation life-cycle

Location of Failing Units

Managed by UT-Battelle for the Department of Energy

Stochastic Conceptual Site Model

- Processing realizations in this way produces the Stochastic Compliance Site Model (SCSM).
- The SCSM is evolved over the investigation life-cycle

MrDM & MrsDM Multiscale sampling and remedial designs

- MrDM identifies the set of remedial units that most efficiently move the site into compliance simultaneously across all spatial scales
 - Simulates remediation by replacing model values with post-remedial values in each realization
 - Minimizes the total volume by considering overlapping topology and multiple DCGL criteria
- MrsDM identifies locations that will likely produce the greatest reduction in MrDM due to a spatial reduction in model uncertainty.

<section-header>

MrDM Results

C&C

Characterization

Scoping

HSA

RLR SCSM MrDM

Remediation

SCSM

MrsDM

Difficult Challenges Remain

Geographic Information Science and Technology

- What do we mean by "best practices"?
 - Contributions by multi-disciplinary teams of geostatisticians, geologists, soil scientists, etc
 - Can we frame a sub-process in the simulation block?
 - Can such a process be objectively critiqued?

• How many samples?

- Traditional classical methods assuming independence
- Geospatial methods that tend to rely on cost-benefit analytics to determine "stopping points"
- Can we develop stronger methods? Will depend on site specific circumstances.
- Rolling into regulatory guidance: field demonstrations, training, regulatory language.

