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ABSTRACT

At the United States Army’s test sites, fired penetrators made of Depleted Uranium (DU) have 
been buried under ground and become hazardous waste. Previously, we developed techniques for 
detecting buried radioactive targets. We also developed approaches for locating buried 
paramagnetic metal objects by utilizing the electromagnetic induction (EMI) sensor data. In this 
paper, we apply data fusion techniques to combine results from both the radiation detection and 
the EMI detection, so that we can further distinguish among DU penetrators, DU oxide, and non-
DU metal debris. We develop a two-step fusion approach for the task, and test it with survey data
collected on simulation targets.

INTRODUCTION

DU is both toxic and radioactive. Due to its high density and pyrophoricity, the material has been 
made into military weapons such as armor piercing penetrator rounds. At the United States
Army’s test sites, there are fired DU penetrators buried under ground surface over the years. 
They become hazardous waste and need to be removed. Therefore, it is very important to 
develop technologies for locating these buried DU penetrators in the field. At the same time, it is 
also of interest to know the state of oxidation of the buried penetrators. DU oxides have higher 
mobility than DU penetrators. Thus, they are more easily to pollute the environment.

For the past several years, we have been working on development of suitable techniques to 
address this challenging task. We developed approaches based on signal processing techniques 
such as matched filtering [1, 2], for successful detection of buried radioactive targets. We also 
developed methods for locating buried paramagnetic metals by utilizing the EMI sensor data [3]. 
With the radiation detection, we can locate radiation sources, but cannot easily distinguish 
between DU and oxides. Although EMI detection can identify DU among other metals, it cannot 
detect if any oxides are in existence. We believe that combination of results from these two types 
of detection will help further distinguish among DU, oxides, and non-DU metal debris.

To achieve this objective, we can utilize data fusion techniques that have been widely adopted in 
remote sensing and wireless sensor networks. Data fusion seeks to improve quality of 
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information obtained from multiple sources by combining them in various manners [4]. For 
object detection or classification applications, typical data fusion techniques fall into two 
categories. One is feature level fusion, which integrates features extracted from raw data from 
different sources. The other is decision level fusion, which fuses detection or classification 
decisions from each source. In this work, we adopt typical decision level fusion techniques, such 
as majority voting (MV) [5], to integrate results from both radiation and EMI detections. We 
develop a two-step approach and test it with data acquired on simulation targets. Our fused 
results can successfully reveal locations for detected DU, oxide, and non-DU metals.

APPROACH

Radiation Detection

We have had success in conducting radiation detection by using gamma spectroscopy collected from 
sodium iodide (NaI) scintillation detectors [1, 2]. In this work, we utilize the conventional RX
algorithm to process the spectral data for the detection. In the RX algorithm [6], a nonstationary 
local mean is subtracted from each spectral pixel within a fixed window. The local mean is 
obtained by sliding a double concentric window, which consists of a small inner window 
centered within a larger outer window over each pixel in an image. The mean is then calculated 
from the spectral pixels falling between the inner and the outer windows. The size of the inner 
window is usually assumed to be the size of the target of interest. The residual signal after mean 
subtraction is assumed to approximate a zero-mean Gaussian random process. Let each input 

signal vector be denoted by
T

nxxx ],...,,[ 21x , then a two-hypothesis test is formulated as

nx :0H , (Eq. 1)

nsx  aH :1 , (Eq. 2)

where n is a noise vector representing the background noise process, s is a feature signal 
representing the anomaly signal, and a is a constant, which is greater than 0 under hypothesis H1

and equals to 0 under H0.

The target signature and background covariance are assumed to be unknown. This model 
assumes that the data come from two normal probability density functions with the same 
covariance matrix but different means [7]. Under H0, the data (background clutter) are modeled 

as ),( bN C0 , and under H1 the data are modeled as ),( bN Cs . It should be noticed that an 
important assumption in the RX-algorithm is that the background and target have the same 
covariance matrix. Generally, this is not a valid model if a particular target structure is to be 
detected. A more appropriate model would have two different covariance structures — one for 
the anomaly (which could be target or background clutter) and the other for the background. 
However, the covariance structure for the anomaly cannot be estimated in reality, since the 
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statistical structure of the anomaly signals cannot be defined. Therefore, the same covariance 
structure for the anomaly and the background is adopted. 

The basic RX algorithm can be written as below:  

)()( 1 μxRμx  T
RXw , (Eq. 3)

where R is the background covariance matrix estimated from the surrounding background data, 
and µ is the estimated background clutter sample mean [8]. A threshold η is to be assigned such 
that detection can be achieved on the RX output.

EMI Detection

According to Maxwell’s laws a permeable object is induced with eddy currents by a time-variant 
H field. The object later generates its own secondary H field. For compact objects with well 
defined shapes such as spheres and cylinders, this H-field can be derived using analytical 
methods as presented in [9]. EMI spectroscopy measures this secondary H-field as a function of 
frequency and analyzes it to determine the object’s EM properties. It has been widely used in 
commercial applications for detection of unexploded ordinances (UXO) and landmines [10]. 

In this work, we utilize Geophex’s GEM-3 sensor for EMI detection [11].  The H-field measured 
by the GEM-3 sensor can be presented as

))(( jQIgeometryfH  . (Eq. 4)

Here, the f(geometry) factor depends on the target/sensor geometry, I represents the inphase 
component of the EMI response, and Q is the quadrature component. Both I and Q are related to 
the material properties of the target [9, 12].

Let Qa be the quadrature component of a background adjusted H-field measured using the GEM-
3 sensor, and our EMI detection algorithm consists of three steps as follows [3].

a) Concavity Test for Metal Signatures

For the frequencies involved in the measurements of this study, the quadrature component of 
most metals usually has only one peak. Thus it may have a concave structure. The concavity 

of a signal Qa can be easily tested by using its second derivate. If 0'' aQ , then the signal has 

a concave shape.

b) Peak Magnitude Test for Separation from Background 

The Q component of the EMI response of a compact permeable object should have a peak 
that is usually greater than the peak of the background noise QBGPeak. Therefore, by this peak 
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magnitude test we can separate a permeable object from the background. Normally QBGPeak

has to be determined from the data empirically. 

c) Matching with a Library of Known Signatures to Identify the Targets

From the above two steps, we can know if the signal Qa represents a permeable metal object. 
To further determine the nature of the metal object, the signal is compared with a library of 
quadrature components of known metals including DU. By evaluating the separation between 
the peak frequency of the object (pftarget) and those of the signatures in the library (pfmetal) 
using the metric 

 2argarg metalettett pfpfD 
, (Eq. 5)

we identify the object of interest as the metal whose signature provides the best match.

Radiation and EMI Data Fusion

To fuse the radiation detection results with the EMI detection results, first of all, we need to cope 
with the situation of mismatch between the survey lines. Currently the radiation survey and the 
EMI survey are performed separately. If at a certain location we have only a result from one type 
of detection, then fusion cannot be conducted for that location. As defined by the resolution of 
the coordinates obtained from the surveying systems, the survey grid size is 1cm by 1cm. When 
we perform the fusion, we re-grid the survey area by setting a grid size reasonable larger than 
this survey grid size. This way, mismatch survey paths may fall into the same grids if they are 
located close enough.

As illustrated in Figure 1, our fusion approach consists of two steps. In the first step, we fuse 
radiation detection results and EMI detection results separately. After re-gridding the survey area 
by increasing the grid size, often times there will be several survey results falling into a same 
grid. We examine all radiation detection results inside a certain grid, and determine if we should 
assign “radiation” or “non-radiation” to the grid by majority voting (MV) [5]. Similarly, we 
examine all EMI detection results inside the grid and vote for that grid to be “DU,” “non-DU 
metal,” or “non-metal.”

In the second step of the fusion, we combine the radiation detection decision from the first step 
with the EMI detection decision. This fusion follows the rules below:

a) If EMI decision is “DU” and radiation decision is “radiation”, then final decision is “DU”;
b) If EMI decision is “DU” and radiation decision is “non-radiation”, then final decision is 

“DU”;
c) If EMI decision is “non-DU metal” and radiation decision is “radiation”, then final decision 

is “oxide”;
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d) If EMI decision is “non-DU metal” and radiation decision is “non-radiation”, then final 
decision is “non-DU metal”;

e) If EMI decision is “non-metal” and radiation decision is “radiation”, then final decision is 
“oxide”;

f) If EMI decision is “non-metal” and radiation decision is “non-radiation”, then final decision 
is “background”.

We note that for rule b) above, the EMI decision is actually in contradiction to the radiation 
decision. In this case, we choose the decision to be “DU” to avoid missing any possible DU 
targets. Similarly, in rule c), we choose to assign “oxide” instead of “non-DU metal” to the grid, 
so that we will not miss any possible radiation sources.

Figure 1. Illustration of the two-step fusion approach.

RESULTS

Datasets

To test the performance of our radiation and EMI data fusion approach, we perform preliminary 
experiments involving simulation targets. We place a group of targets in a parking lot and survey 
the area with both radiation and EMI detectors. As illustrated in Figure 2, the targets include DU 
(big and small), DU oxides, and metallic objects such as aluminum, brass, copper, and steel. The 
radiation survey includes 16 parallel paths and 7477 measurements, while the EMI survey is also 
along 16 parallel paths but consists of a total of 4205 measurements.

Radiation Detection

We applied the RX algorithm to the radiation survey data. The threshold η used for the detection 
was empirically set to be 280. The detection results are shown in Figure 3. From the figure, we 
can see that almost all DU targets and oxides were detected, except for two small DU targets that 
were placed away from the survey path. There are also some false alarms, but they are basically 
located around true targets, especially the two big DU targets. The non-DU metals are not 
radioactive, thus undetectable in this survey.
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Figure 2. Distribution of simulation targets along the EMI survey path.

Figure 3. Results of radiation detection with ground truth information.
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EMI Detection

We applied our three-step analysis approach to the EMI spectroscopy survey data. The detection 
results are presented in Figure 4. As we can see, most of the targets including DU, copper, brass 
and steel were all detected and identified correctly. Several small DU targets that are located 
away from the survey line were not detected. Since oxides do not have any magnetic properties,
they were not detected by the EMI survey and were missing from the detection results.

Figure 4. Results of EMI detection. For ground truth information, refer to Figure 2 above.

Radiation and EMI Data Fusion

For the re-gridding, we set the grid size to be 25cm by 25cm (about 10” by 10”). By applying our 
two-step fusion approach to the radiation detection and EMI detection results, we obtain the 
fused map (Figure 5) showing locations of DU, oxides, and non-DU metals. We observe that the 
majority of the simulation targets were located and identified correctly in the map. For DU, three 
out of the six were detected. The three missing ones are small and off the survey path. For 
oxides, two out of the three were detected. The only missing one has been identified as a 
radiation source in the radiation detection, but was voted out in the fusion process. The non-DU 
metals were also detected successfully, with only one of them missing in the fused map. 
Similarly, that one was detected in the EMI survey, but was not kept in the fusion process. There 



WM2012 Conference, February 26 – March 1, 2012, Phoenix, Arizona, USA

8

are some false alarms in the fusion results, especially for the oxides. However, these false 
detections of oxides are all around DU targets, which is reasonable. They are actually carried 
over from the radiation detection results. An improved radiation detection algorithm will help 
reduce these false alarms in the fusion. 

Figure 5. Results of radiation and EMI data fusion with ground truth information. The ground 
truth markers are all colored in magenta. They are of the same shape as markers for the 
corresponding fusion results.

CONCLUSIONS

In this work, we explored radiation and EMI data fusion for detecting DU, oxides, and non-DU 
metals. We developed a two-step fusion approach based on majority voting and a set of decision 
rules. With this approach, we fuse results from radiation detection based on the RX algorithm 
and EMI detection based on a 3-step analysis. Our fusion approach has been tested successfully 
with data collected on simulation targets. In the future, we will need to further verify the 
effectiveness of this fusion approach with field data.
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