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ABSTRACT

Laminar flow of a viscous fluid in the pore space of a saturated fractured rock medium is 
considered to
calculate the effective permeability of the medium. The effective permeability is determined from
the flow field which is calculated numerically by using the finite element method. The 
computation of permeability components is carried out with a few different discretizations for a 
number of fracture arrangements. Various features such as flow field in the fracture channels, 
the convergence of permeability, and the variation of permeability among different fracture 
networks are discussed. The longitudinal permeability in general appears greater than the 
transverse ones. The former shows minor variations with fracture arrangement whereas the 
latter appears to be more sensitive to the arrangement

INTRODUCTION

Fracture networks are commonly observed in the underground rock media. Under pressure 
anomaly in a water-saturated medium, fluid flow takes place and it significantly influences the 
transport of solute in water. The fluid flow pattern depends on not only the externally imposed 
pressure gradient but also the fracture arrangement in the network. 

The characteristics of the flow through a porous medium are usually discussed with the effective 
permeability of the medium. Therefore it is of utmost importance to evaluate the permeability 
from accurate description of the flow field inside the fracture channels. It is also very important 
for effective management of the underground repository located in a rock medium with fracture 
network. 

In this study, the process of fluid flow through a medium with fracture network on the microscale 
is investigated with emphasis on the effective macroscale permeability coefficient. 

The theoretical framework is based on the homogenization theory which systematically 
combines the processes on the microscale and deduces the governing equations and the 
effective coefficients on the macroscale[1]. Under two basic assumptions, (i) the periodicity of 
the medium structure on the microscale with periodic length l and (ii) the periodicity of all 
variables and material properties with the same periodic length. The periodicity assumption is
not very restrictive because the distributions and arrangements over the periodic length are 
quite arbitrary.

The fracture network used in the present study is composed of four fractures. This is a 
continuation of the effort in a similar work for a fracture network composed of three fractures[2]. 
Two fractures are parallel to each other and are aligned along the direction of 45-deg  
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counterclockwise from the horizontal direction. The third and fourth ones connect the parallel 
fractures at different angles. Specifically three cases are considered: (i) the spacing between 
the connecting fractures decreases when moving from the lower parallel one to the upper 
parallel one (narrowing), (ii) the spacing between the connecting fractures is constant and they 
are normal to the parallel fractures(parallel), and (iii) the spacing between the connecting 
fractures increases when moving from the lower parallel one to the upper parallel one(widening).

The longitudinal permeability(permeability in the same direction as the externally-imposed
pressure gradient) generally appears to be greater than the transverse one(permeability in the 
direction normal to the external pressure gradient), as can be expected for most medium 
structure, and is rather insensitive to the inclination pattern of the connecting fractures. On the 
other hand, the transverse permeability, which is smaller than the longitudinal one, appears to 
be affected much more by the connecting fracture inclination even though the differences in the 
inclination pattern are minor.

Various features including flow field distribution in the fracture channels, the convergence of 
permeability, and the variation of permeability among different fracture networks are discussed.

MULTIPLE SCALE ANALYSIS

The features of the multiple scale perturbation analysis used in [2] are briefly reproduced. 
Recognizing the scale disparity in the process of fluid flow, two distinct length scales are 
introduced: the microscale(the fast scale which is equivalent to the size of the representative 
elementary volume in the traditional treatment of the problem) and the macroscale(the scale 
over which the process of interest takes place from the viewpoint of reservoir engineering and 
management).

The variables are expanded as perturbation series by using the following small parameter:

in which l is the microscale length and l' is the macroscale length. Upon expansion of the 
governing equations and boundary conditions, the microscale boundary-value problems are 
investigated separately according to the respective order of є and,  via volume-averaging over 
the micro-cell with the size l, the macroscale governing equations and the effective coefficients 
are derived. 

In the process of the multiple scale analysis, a canonical micro-cell boundary-value problem is
defined whose solution is used in the calculation of the effective permeability of the medium by 
averaging over the micro-cell volume.

THE MICRO-CELL  BOUNDARY-VALUE PROBLEMS

For fluid flow the following Stokes problems is defined:

(1a-e)
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In the above, K=Kij and S=Sj are the fluid velocity in the i-th direction and the fluid pressure in 
the micro-cell due to externally imposed pressure gradient in the j-th direction. 

The macroscale permeability is then given by the micro-cell volume average of K as

(2)

and the Darcy’s law is given as 

(3)

where the left-hand side is the seepage velocity and the primed gradient is the derivative of the 
fluid pressure over the macroscale. This serves as the momentum equation on the macroscale.

THE FRACTURE GEOMETRIES 

The geometries of fracture network used in the present study to calculate the permeability are 
shown in Fig. 1 (a) – (c).

(a) (b)

(c) 
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Fig. 1. Three different types of fracture network: (a) Narrowing, (b) Parallel, and (c) Widening. 
The macroscale pressure gradient is in the horizontal(x-) direction.

NUMERICAL CALCULATION

The direction of the externally imposed macroscale pressure gradient is chosen to be in the 
horizontal(x-) direction for the fracture geometries sown in Fig. 1.

Discretization 

For each of the cases (i), (ii) and (iii), three different meshes have been used and are 
summarized in Table I below in which Ne is the total number of elements used in the numerical 
calculation of the flow field in the fracture. Specifically increasing Ne indicates refined 
discretizations in the blocks near the junctions of fractures in Fig. 1.

Table I. Discretization of the fracture channel

Case (i)  

Case (i)-1 Case (i)-2 Case (i)-3
Ne 780 1016 1296

Case (ii)  

Case (ii)-1 Case (ii)-2 Case (ii)-3
Ne 780 1016 1296

Case (iii)  

Case (iii)-1 Case (iii)-2 Case (iii)-3
Ne 780 1016 1296

Flow field in the fracture network

The results of the calculated flow field for Cases (i), (ii) and (iii) are shown in Figs. 2-4. 
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(a) (b)

(c) 

Fig. 2. Flow field for the case (i) of narrowing connecting channels with different discretization: 
(a) Case (i)-1, (b) Case (i)-2, and (c) Case (i)-3. The number of elements increases from (a) to 
(c) as summarized in Table I.
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(a) (b)

(c)

Fig. 3. Flow field for the case (ii) of parallel connecting channels with different discretization: (a) 
Case (ii)-1, (b) Case (ii)-2, and (c) Case (ii)-3. The number of elements increases from (a) to (c)
as summarized in Table I.
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(a) (b)

(c)

Fig. 4. Flow field for the case (ii) of widening connecting channels with different discretization: 
(a) Case (iii)-1, (b) Case (iii)-2, and (c) Case (iii)-3. The number of elements increases from (a) 
to (c) as summarized in Table I.

As mentioned earlier, the discretization has been refined around the junctions where the 
flow field varies most significantly.

RESULTS AND DISCUSSION

The micro-cell boundary-value problem defined above, i.e., the Stokes problem for flow field, 
was solved by using two-dimensional finite elements. The details are omitted.

The effective permeability on the macroscale has been calculated by volume-averaging of the 
velocity field over the microcell. The results are summarized in Table II and the errors 
associated with progressively finer meshes are summarized in Table III. Note that <Kxx> and 
<Kyx> are the permeability in the x- and y-directions due to an externally imposed pressure 
gradient in the x-direction respectively.

Table II. Calculated permeability.

CCase 1-1 Case 1-2 Case 1-3
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1.02633270e-
04

1.00302671e-
04

9.88649253e-
05

1.95211556e-
05

2.43763746e-
05

2.48362424e-
05

CCase 2-1 Case 2-2 Case 2-3
1.05121946e-
04

1.04668866e-
04

1.04474120e-
04

1.23697749e-
05

1.78413330e-
05

1.78308790e-
05

CCase 3-1 Case 3-2 Case 3-3
1.01430297e-
04

1.01082366e-
04

1.00796504e-
04

1.35370092e-
05

2.01847758e-
05

2.00679087e-
05

Table III. Errors in the calculation of effective permeability..

Error(%)
Case (i)-1 ⟶ Case (i)-

2
Case (i)-2 ⟶ Case (i)-

3
2.24 1.4
24.9 1.9

Error(%) Case (ii)-1 ⟶ Case 
(ii)-2

Case (ii)-2 ⟶ Case 
(ii)-3

0.38 0.19
44.2 0.05

Error(%)
Case (iii)-1 ⟶ Case 

(iii)-2
Case (iii)-2 ⟶ Case 

(iii)-3
0.39 0.30
49 0.55

As shown in Table II, the effective permeability values in the longitudinal direction are greater 
than the transverse ones which is natural unless the fracture arrangement is such that the 
transport of the fluid is mostly in the transverse direction by peculiar arrangement of fractures. It 
is noted from Table III that the convergence becomes much better when moving from the 
second mesh to the third mesh. The convergence appears to be quite satisfactory and no 
further refined calculations have been made.

The longitudinal permeability <Kxx> for the parallel connecting fractures[Case (ii)] is larger than 
those for the narrowing[Case (i)]  and the widening[Case (iii)] fractures. For the parallel case 
the connecting fractures contribute equally to the transport of the fluid from the upper inclined 
parallel fracture to the lower inclined parallel one. On the other hand, the left connecting fracture 
in the narrowing case and the right fracture in the widening case tend to reduce fluid transport
from the upper inclined parallel fracture to the lower inclined parallel one. As a result, the net 
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movement of the fluid in the longitudinal direction is decreased thereby resulting in lower 
permeability. 

The transverse permeability <Kyx> is about 20 to 25% of the longitudinal permeability. 
Specifically <Kyx>  for the parallel connecting fractures[Case (ii)] is less than those for Cases (i) 
and (iii). It is again due to the arrangement of the connecting fractures. Those connecting 
fractures mentioned above in the discussion of the longitudinal permeability, on the contrary, 
serve as more efficient passage of the fluid into the transverse direction. As a result, <Kyx> 
becomes larger in Cases (i) and (iii). 

CONCLUSIONS

From the calculations of the permeability in a rock medium with a fracture network(two parallel 
fractures aligned in the direction of 45-deg counterclockwise from the horizontal and two 
connecting fractures(narrowing, parallel and widening) the following conclusions are drawn.

1. The permeability of fractured medium not only depends on the primary orientation of the main 
fractures but also is noticeably influenced by the connecting fractures in the medium.

2. The transverse permeability(the permeability in the direction normal to the direction of the 
externally imposed macroscale pressure gradient) is only a fraction of the longitudinal one, but 
is sensitive to the arrangement of the connecting fractures.

3. It is important to figure out the pattern of the fractures that connect(or cross) the main 
fractures for reliable calculation of the transverse permeability.
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