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ABSTRACT

Radionuclide migration in geological media is considered within the framework of safety 
assessment of radioactive waste disposal facility. In this context groundwater flow and 
transport models are necessary. Computational technologies allowing for semiautomatic 
generation of unstructured meshes with different cell types, i.e. tetrahedra, hexahedra and 
pyramids and the subsequent solution of groundwater flow problems on these meshes are 
introduced. The application of methods is demonstrated in the groundwater flow model for 
a decommissioned subsurface reactor vessel, buried on its current location.    

INTRODUCTION

After the adoption of the law regulating the radwaste management in the Russian 
Federation a number of new safety problems for RW repositories become a challenge. In 
most cases geological media will act as the principal safety barrier for the prospective 
repositories and existing legacy contaminated sites. Safety cases and safety assessments 
of these sites require appropriate numerical models allowing to predict the migration of 
isotopes in complicated geological conditions for a long time period (hundreds of 
thousands of years).

The present-day technological level and availability of parallel computers make it possible
to create 3D numerical models with tens of millions of cells or vertices in the computational 
grid. Cutting edge computational schemes are required to solve problems featuring domain 
geometrical complexity, necessity of precise boundary representation and layer pinch-outs.
To satisfy these requirements of precision and computational efficiency in our works we 
focus on the use of unstructured hybrid meshes with different types of cells as well as 
arbitrary polyhedral meshes. For example, we make use of grids containing hexahedra, 
tetrahedra and pyramids. An adaptive tetrahedral grid with prescribed cell size can be 
generated automatically in subdomains with complex boundaries while hexahedral mesh is 
the most appropriate for layered subdomains with simple boundaries. Transition from 
tetrahedra to hexahedra is performed by pyramidal cells.

The prediction of radionuclides migration comprises two joint tasks: groundwater flow and 
transport problems. The main tasks along their solution are the discretizations of the 
diffusion and advection operators in space. As long as arbitrary polyhedral grids are 
concerned we use finite volume methods [1] for the diffusion operator discretization. Herein 
linear multipoint flux approximation methods may be applied as well as the novel nonlinear 
methods [2], which guarantee solution non-negativity. For the advection operator 
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discretization we consider using a finite volume scheme with piecewise-linear solution 
reconstruction providing second order accuracy and low numerical diffusion [3].

The application of the aforementioned computational technologies is demonstrated in the 
creation of a 3D groundwater flow model for a nuclear legacy site – decommissioned 
reactor vessel disposed of at its current location. 

NUMERICAL TECHNOLOGY AND ITS APPLICATION

In case when the contaminant concentration doesn’t significantly alter the groundwater 
density, density-driven convection may be neglected and groundwater flow and transport 
problems may be solved separately. In order to create a radionuclide migration model one 
shall generate the computational grid and numerically solve the groundwater flow and then 
the transport problem. The algorithm of a model groundwater flow problem solution with 
parameters close to reality is considered further.

The computational domain is quadrilateral in the horizontal XY-plane (see Fig. 3), 100m 
high along the Z axis, with horizontal lower and upper boundaries, and vertical side 
boundaries. The reactor vessel building subsurface part, the shaft, is cut out of this domain, 
the computations are conducted only in the external media with respect to the shaft.

Stationary groundwater flow problem is to be solved. Fluxes are governed by the Darcy 
law. The mass conservation law is written in the following form:

( , , , ) 0K H x y z H   (Eq. 1)

Here H is the hydraulic head (measured in meters of water column) to be computed. 
( , , , )H xK y z - is the symmetric positive definite hydraulic conductivity tensor assumed

diagonal in this work:
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As the groundwater flow occurs in the near-surface area, partially in the vadoze zone,  the 
hydraulic conductivity tensor  ( , , , )K H x y z is assumed to depend on the hydraulic head. 
The hydraulic conductivity coefficients decrease in the unsaturated zone with respect to 
saturated conditions. Here is a description of the computation of ( , , , )K H x y z .

First the tensor is defined for saturated conditions. In this case it is assumed isotropic, say 
( , , , ) ( , , ) ( , , )K H x y z K x y z k x y z I  , where I is 3х3 identity matrix. The hydraulic 

conductivity coefficient ( , , )k x y z is determined from the hydraulic transmissivity map [4]
dividing it by the layer thickness and taking into account the location of the mesh cell, for 
which the coefficient is computed. It is assumed that the computational domain consists of 
two horizontal layers with different parameters, the upper layer (with higher permeability), 
and the lower  layer (with lower permeability). This structure is stipulated by the 
dependence of rock fracturing on depth. The hydraulic transmissivity of these two layers is 
connected with the hydraulic conductivity coefficients by the following relation
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  1 1 2 2, ( , ) ( , )mT x y k x y x myk  , (Eq. 3)

where  ,T x y is the hydraulic transmissivity, 1 60m  - upper layer thickness (m), 2 40m  -

lower layer thickness (m), 1 21( , ) ( , )0kk x y x y - the upper layer hydraulic conductivity

coefficient is ten times higher that the lower. The index i denotes the upper ( 1i  ) or the 
lower ( 2i  ) layer, the coefficients 1 2( , ), ( , )k kx y x y do not depend on z any longer. The

hydraulic conductivity coefficients obtained from Error! Reference source not found.
exhibit high spatial heterogeneity (approximately 5 orders, from 53.1·10 to 11.6·10 ).

A simplified pseudo-unsaturated approach [5] is used to simulate groundwater flow in the 
vadoze zone. Its idea is to significantly decrease the hydraulic conductivity tensor 
components in unsaturated conditions. In order to let the precipitation seep till the 
saturated zone, the coefficient zk is assumed constant, independent of H , say

, ( , ) ( , )i z ikk x y x y . For the horizontal hydraulic conductivity coefficient , ( , , )i xyk H x y the 

following approximation is used:
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(Eq. 4)

In Error! Reference source not found. botH , topH are the heights of the cell bottom and

top points respectively. As a result the hydraulic conductivity coefficients ,i xyk in every 

mesh cell depend on the saturation, defined by the hydraulic head and its Z-coordinates. If 
the cell saturation becomes sufficiently low, tensor horizontal component is substantially
reduced thus limiting the flow associated with the given cell in horizontal directions.

The boundary conditions are based on the following considerations:

 the lower boundary - no flux boundary conditions. An impermeable clay layer is 
deposited 100 m deep.

 side surfaces – Dirichlet-type boundary conditions, based on the annual average 
water table map [4];

 top surface – Neumann-type boundary conditions, prescribed precipitation seepage 
defined by the annual average rainfall for the area with the assumption that 1/10 of 
the rainfall reaches the groundwater table;

 reactor shaft surface – the drainage system keeps the water level inside the shaft on 
a fixed point slH , the space of the shaft lower slH is filled by water. We set 

21slH   m.

In more detail the boundary conditions on the faces belonging to surface of the reactor 
shaft are defined by the following assumptions:
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 if the mass center of the face is lower than the drainage level slH the flux through 

the face is proportional to the difference between the hydraulic heads inside the 
shaft and on the face itself. The factor of proportionality is defined as the hydraulic 
resistance of the concrete wall.

 if the mass center of the face is higher than the drainage level slH and higher than 

the computed hydraulic head on this face, the impermeability condition (zero flux) is 
imposed because the media is unsaturated;

 if the mass center of the face is higher than the drainage level slH but lower than the 

computed hydraulic head on this face, seepage face boundary condition is imposed 
(the flux is proportional to hydraulic head).

Formally the boundary conditions of the reactor shaft surface are written as follows:
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(Eq. 5)

Here  , , , ·f fH x yK Hz n   


- flux through the face f , fn - external with respect to the

computational domain unit normal vector to the face; fZ -height of the face f mass center; 

fH - computed hydraulic head on f ; 32·10  day-1 – the hydraulic resistance of a 

concrete wall 0.5m thick. 

The Picard method is applied to solve the nonlinear problem 
Error! Reference source not found.:

  1, , , 0i iH x y zK H    (Eq. 6)

The boundary conditions on the side, top and bottom surfaces of the computational domain 
do not change along the iterative process Error! Reference source not found.. The 
boundary conditions on the shaft surface must be defined on each iteration. On the first 
iteration the flux through a face f on the reactor shaft surface is defined as follows
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where 1
fH - is the value of the initial guess 1H on the face f .  On all the subsequent

iterations the following expressions are used to determine the fluxes through faces of the 
shaft surface:
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The hydraulic conductivity tensor on the first iteration is the same value as if it were under
fully saturated conditions. On each subsequent iteration it is recalculated using the values 

, 2,3,iH i   according to formula Error! Reference source not found..

A mixed grid containing hexahedral, pyramidal and tetrahedral cells is generated for the 
discretization of the problem in the given domain.Here is the mesh generation algorithm 
step-by-step: 

1) The user creates the initial coarse conformal grid, containing quadrilaterals, in 
the footprint of the computational domain in the XY plane.

2) The quadrilateral grid is automatically uniformly refined and converted into a 
3D conformal hexahedral mesh by addition of a sufficient number of identical horizontal 
layers. The user sets the necessary parameters of refinement in the horizontal plane and 
along the vertical axis.

3) A parallelepiped containing the reactor vessel shaft with a margin of several 
tens of meters on every side is cut out of the hexahedral grid.

4) The tetrahedral grid and the intermediate layer are constructed. This 
procedure comprises the following substeps:

 Sorting of the nodes lying on the planes in the cut-out area. Node coordinates 
serve as sorting parameters.

 Addition of new nodes to the mesh. These nodes will be the vertices of the 
pyramids built on the faces belonging to the planes in the cut-out area.

 Addition of pyramidal cells to the mesh.

 Addition of tetrahedral cells filling the space between the pyramids. Thus, the 
intermediate layer is formed, containing pyramids and tetrahedra.

 Generation of surface triangular grid on the reactor vessel shaft basing on its 
CAD (computer-aided design) model. The surface_CGM_model function from 
Ani3D package is used (see Fig. 1).

 Generation of a surface triangular grid on the top plane of the computational 
domain between the nodes of the intermediate layer and the nodes in the surface 
grid of the reactor shaft. mesh_2d_aft_cf function from the Ani2D package is used 
[6]. 

 Generation of a tetrahedral grid in the subdomain enclosed by the reactor shaft, 
the top boundary of the computational domain and the intermediate layer taking 
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as input the existing surface grid. Function mesh_3d_aft_cf [6] from Ani3D
package is used.

5) Merging the grids (hexahedral, intermediate layer and tetrahedral) in one –
mixed grid (Fig. 2).

Fig. 1. Surface grid of the reactor vessel shaft.
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Fig. 2. Final mixed grid.

The diffusion equation discretization is provided by the finite volume method (FV). FV 
allows to obtain the expression for the left-hand-side of  
Error! Reference source not found. in terms of hydraulic head in the cell mass centers 
and mass centers of the boundary faces with non-Dirichlet-type boundary conditions. The 
O-scheme with multipoint flux approximation [7,8] was chosen from the variety of linear  
FV methods. Convergence of the O-scheme was proved on triangular and tetrahedral grids 
[9]. In the tests the scheme exhibits second order convergence for the hydraulic head and 
first order for the fluxes. 

The stabilized bi-conjugate gradient (BiCGSTAB) method along with the nonsymmetric 
version of ILU2 [10] preconditioner is used for the solution of arising linear systems 

RESULTS AND DISCUSSION

The stopping criterion for the external (Picard) iteration loop was chosen as the maximum 
norm of the difference in two solutions, obtained on subsequent iterations:

1i iH H 


 (Eq. 9)

with parameter 510  . The experiment was conducted on a grid with 32617 cells. Fig. 3
shows the hydraulic head distribution in the computational domain (in meters of the water 
column) on the plane 0Z  . One can see that the reactor vessel shaft does not influence 
the groundwater fluxes structure in the computational domain. The hydraulic head has two-
dimensional structure in most of the domain, except for the close vicinity of the shaft, where 
it depends on Z coordinate. Fluxes in the vicinity of the shaft and on its surface are 
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depicted by arrows on Fig. 4. It can be seen that the shaft acts as a local drainage in the 
area, and the fluxes are directed into the shaft.

Fig. 3. Hydraulic head distribution in the domain.
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Fig. 4. Fluxes in the vicinity of the reactor shaft.

It must be noted, that there exists a problem of convergence of the internal iteration loop 
(linear systems solution), namely it takes more than 300 internal loop iterations to reduce 
the residual down to 910res  on each step of the Picard method. Note, that if the stopping 
criterion res is to be increased, the external Picard iterative process fails to converge 
because of the low precision of the linear system solution. The primary root of the problem
is the mesh. The irregularities in the reactor shaft CAD model lead to strongly elongated 
cells in the surface grid and subsequently in the spatial grid as well. Hydraulic conductivity 
tensor heterogeneity (almost 5 orders) and its anisotropy also deteriorate convergence. 
The most simple and evident way to ensure the convergence of the internal and external 
loops is the proper modification of the reactor shaft CAD model. Also the application of 
another discretization method and another preconditioner is worth consideration in the 
future.
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