ENERGYSOLUTIONS

Aqueous Recycling of Used Nuclear Fuel

Chris Phillips Energy*Solutions* LLC, Richland, Washington

Panel on Options for UNF Management in the USA Waste Management 2012 Phoenix AZ, February 27- March 1, 2012

- Once-Through-and-Store at the individual Reactor Sites
 - Current default arrangement the "Open Cycle"
- Once-Through-and-Store at one or more Consolidated Storage Facilities
 - Open Cycle again, but with improved security and economy
- Once-Through-and-Store in one or more National Repositories
 - The 'Yucca Mountain option'
- The Modified Open Cycle
 - as identified in the DOE Fuel Cycle R&D Roadmap
 - Recycle of certain UNF components, with limited or no separations
- Full Recycle
 - Separation of bulk uranium, uranium+plutonium, actinides and fission products
 - Recycle of the uranium and plutonium as nuclear fuel
 - 'Burning' of the actinides conversion to lower atomic weight shorterlived species

Commentary on these Options

- It is not sensible to leave UNF at individual reactor sites indefinitely
 - 'Self-protection' from FPs will decrease with time
 - Each site will require increasing levels of security
- One or more consolidated UNF storage facilities are a sensible interim measure
 - Enables better security measures to be employed
 - More economic, and takes UNF off the hands of the power utilities
 - But doesn't offer a permanent solution
- A national repository will be needed no matter what is done with UNF
 - But processing the UNF will significantly reduce the volume of HL waste to be stored
 - Processing the UNF produces a more robust waste form than UNF assemblies
- The Modified Open Cycle is worthy of further R&D
 - But at the moment it poses significant problems for fuel manufacture & handling
- Full UNF Recycling should be an attractive option but has been unjustly demonized in the US
 - It is successful and economic in Europe, using 3rd generation technology
 - It significantly reduces the volume of HL waste to be stored
 - The robust vitrified waste form opens up other repository options e.g salt domes

Energy Solutions' NUEX, & other 4th generation recycling processes, answer all these objections

Why isn't the US Recycling UNF?

- Recycling of UNF is routinely done in the UK (Sellafield) and France (La Hague)
 - Typical facility capacity 800-1000 tons/year
- One or more closed cycle "Consolidated Fuel Recycling Centers" were planned to be built in the USA, starting in 2009, under GNEP
- However, four objections are raised in the US that have so far discouraged recycling:
 - Suitable technology for recycling has not been developed
 - Recycling is a proliferation risk because it separates pure plutonium
 - Recycling discharges radioactive waste to the environment in unacceptable amounts
 - Recycling is un-economic

Predominately based on solvent extraction using tri-butyl phosphate in kerosene diluent

- First Generation (1940-50)
 - Hanford, Savannah River in the USA
 - Sellafield Butex in England
- Second Generation (1960s)
 - Sellafield Magnox in England
 - Marcoule in France
 - Tokai-Mura in Japan
 - Mayak in Russia

• Third Generation (1980-2000)

- Sellafield THORP in England
- La Hague UP3 and UP2 800 in France
- Rokkasho-mura in Japan

• Fourth Generation (2020s?)

- EnergySolutions' NUEX Facility
- AREVA's COEX process
- US National Laboratories' UREX process

Energy*Solutions*' NUEX 4th Generation Recycling Process

How Mature are these Recycling Processes?

Detailed design could start immediately

HLW and GTCC Waste Volume Reduction Achieved by Recycling

Vitrified product volume reduction from SNF is here shown to be about 13-fold. This allows for vitrified product containers Depending on heat-related packing factors that are assumed, this factor can fall to about 6-fold

The Business Case for Recycling

- The bulk recycled uranium from Recycling can be sold as fuel to reactor operators:
 - It can be used in existing LWRs following re-enrichment
 - It is competitive with "fresh" enriched uranium given a minimum uranium market price (typically somewhat greater than \$80/pound, depending on assumptions)
 - It can be used in HWRs reactors without re-enrichment
 - It is competitive now and electricity utilities in China are already testing its use
- The mixed uranium-plutonium stream can be made into MOX fuel for LWRs
 - Use of MOX fuel is already well established in Europe
 - It is competitive now with standard uranium fuels (at ~10% discount)
- Use of the existing and going-forward US waste fund adds to these product sales incomes to provide the balance of funding
 - US Utilities have been paying into this fund at 0.1 cent per kwhr of electricity generated
- Detailed design of a recycling facility could start immediately, leading to an operational facility in about ~17-20 years

Business model developed by Booz Allen Hamilton

- Aqueous UNF recycling is a mature technology that has evolved significantly over its 50 years of use:
 - 4th generation technology
 - No separation of pure plutonium
 - Near zero, or zero, radioactive waste discharges
 - Recycle of uranium and plutonium is a valuable energy source
 - Compact, robust waste forms
 - Removing transuranics from the waste vastly shortens its radioactive duration
- The four US objections to UNF Recycling are thus no longer valid for modern 4th generation aqueous recycling facilities
- Creating one or two Consolidated UNF Storage Facilities is a good idea
 - But should be seen as a step along the path to recycling

How are these Advances Achieved?

- The NUEX process builds on the industrially proven world recycling facilities (England (THORP), France, Japan)
- Flexible flowsheet: ability to make products with differing proportions of uranium, plutonium and neptunium
- Separation of pure plutonium is avoided by adjustments to solvent extraction separation chemistry. Typical products are:
 - Bulk uranium oxide ("RU") for use in HWRs and LWRs
 - Mixed uranium, plutonium, neptunium oxides
 - Proportions of U, Pu, Np can be varied by altering redox reagents, acidities, conditioning temps
 - Np can be separated if required for separate treatment or storage
 - Tc can be separated if required for separate treatment or storage
 - Americium, curium produced for target burning in HWRs, LWRs & fast reactors
- Uses improved "salt-free" reagents
 - Nearly all wastes can be vitrified: >99% of the radioactivity in the SNF
- Zero or near-zero liquid discharges
 - Recycle of nearly all process water as reagent make-up
 - Purge water is cement-encapsulated
- Gaseous tritium (H-3), krypton-85, iodine-129, carbon-14 captured
 - Economics of krypton-85 capture under continued review
 - Necessity for tritium capture under continued review

- "Suitable technology for recycling has not been developed"
 - Suitable 3rd generation technology has been developed in Europe over the last 50 years and could readily be advanced to 4th generation for use in the US
- "Recycling is a proliferation risk because it separates pure plutonium"
 - 4th generation recycling does not separate pure plutonium at any point in the process
 - Modern accountancy methods allow accurate measurement of fissile material content at any point in the process – allowing any unauthorized diversion to be quickly detected. Full IAEA approval for this
 - Recycling ultimately reduces the fissile material circulating in the fuel cycle
- "Recycling discharges radioactive waste to the environment in unacceptable amounts"
 - 4th generation recycling discharges trivial or indeed no radioactivity to the environment
 - Over 99% of the UNF radioactivity goes to glass encapsulation
- "Recycling is uneconomic"
 - A coherant business case has been produced
 - This does requires access to the Waste Fund and a minimum price for fresh uranium