

The Case for Long-Term Storage

John Kessler

Manager, Used Fuel and HLW Management Program

WM2012 Session 17: Exploring the Options for Used Nuclear Fuel in Light of U. S. and International Decisions

27 February 2012

Storage is Only an Interim Solution

- Disposal will still be needed
 - If once-through fuel cycle: "spent" fuel
 - If advanced fuel cycle:
 - "Used" fuel
 - "Spent" fuel (UOX, MOX, fast reactor, other)
 - HLW
 - GTCC
 - •
- Most countries have no disposal option (yet) and no reprocessing (if ever)
 - Storage may be "extended" (decades, maybe >100 years)


Prolonged On-Site Storage: Industry Options

- "Reracking": denser in-pool storage
 - Industry has reracked about as much as it can
- Move used fuel from pools into dry storage
- Extract more energy per assembly (higher "burnups")
- Build a centralized interim storage site
- Extend the life of existing dry storage systems

Even with options, inventories are building

Cumulative U.S. Commercial Spent Nuclear Fuel Inventories – 2010 to 2060 (assumes no nuclear expansion, 60-year life)

Functions of Dry Cask Storage Systems

- Thermal performance
- Radiological protection
- Confinement
- Sub-criticality
- Retrievability

Can existing and future dry casks maintain these functions for decades?

Aging Management R&D Needs

- Near-term: Maximize life of existing systems and ensure transportability
 - Huge investment: ~1500 dry storage systems now, ~100 more annually (~\$1 million each)
 - Additional data and analyses of long-term degradation mechanisms
 - Enhanced monitoring and inspection
- Intermediate-term: Evaluate mitigation/design options
- "Eventually" (more costly, higher worker dose)
 - Canning
 - Repackaging
 - Over-packaging
 - Use risk-informed approach to decision making

When is "eventually"?

EPRI Extended Storage Collaboration Program

- Purpose: Provide the technical bases to ensure safe, longterm used fuel storage and future transportability.
- Participants: EPRI, NRC, DOE, NEI, utilities, vendors, international
- Phased approach
 - Phase 1: Review current technical bases and conduct gap analysis for storage systems
 - Phase 2: Conduct experiments, field studies, and additional analyses to address gaps
 - Phase 3: Coordinate research that results in a demonstration of a licensed dry storage system loaded with high burnup fuel (>45 GWd/MTHM)

EPRI's Highest Priority R&D Gap: Dry Storage SS Canister SCC in Marine Environments

- Conditions that may support SCC of SS dry storage canisters
 - Presence of salt on canister surfaces ("marine environments")
 - Particular combination of temperature and relative humidity
 - Lower temperatures for older storage systems
- EPRI and industry initiating in situ SS canister inspections
 - Visual
 - Surface temperatures
 - -Salt "swipes"
- Combine with studies by others
- Goal: industry-wide aging management plan

Conclusions

- Used fuel being managed on a plant-by-plant basis
 - Continued use of on-site dry storage systems until:
 - Plant shutdown
 - Centralized storage is available
 - Disposal is available
- Increasingly difficult to add to on-site inventories
 - Space, dose, public concern limitations
 - New security requirements?
 - Shutdown plants: all that is left is the fuel

Used Fuel Storage Must be Integrated at the National Level

Together...Shaping the Future of Electricity