
WM2011 Conference, February 27 – March 3, 2011, Phoenix, AZ

GoldSim Dynamic-Link Library (DLL) Interface for
Cementitious Barriers Partnership (CBP) Code Integration – 11444

Kevin G. Brown*, Frank Smith** and Gregory Flach**

*Vanderbilt University, School of Engineering, CRESP III, Nashville, TN 37235
**Savannah River National Laboratory, Aiken, SC 29808

Keywords: simulation, dynamic-link library, DLL, code integration, Cementitious Barriers Partnership

ABSTRACT

The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration
supported by the United States Department of Energy (US DOE) Office of Waste Processing. The objective of
the CBP project is to develop a set of tools to improve understanding and prediction of the long-term
structural, hydraulic, and chemical performance of cementitious barriers used in nuclear applications. The tools
developed under this project have been used to evaluate and predict the behavior of cementitious barriers used
in near-surface engineered waste disposal systems, e.g., waste forms, containment structures, entombments,
and environmental remediation, including decontamination and decommissioning analysis of structural
concrete components of nuclear facilities. The periods of cementitious performance being evaluated are up to
or longer than 100 years for operating facilities and longer than 1000 years for waste management.

The CBP project is focused on reducing the uncertainties of current methodologies for assessing cementitious
barrier performance and increasing the consistency and transparency of the assessment process. To better
characterize the uncertainties in the models used to predict barrier performance, GoldSim is used as a
probabilistic framework with interfaces to external codes for specific calculations. A general dynamic-link
library (DLL) interface has been developed to link GoldSim with external codes. The DLL that performs the
linking function is designed to take a list of code inputs from GoldSim, create an input file for the external
application, run the external code, and return a list of outputs, read from files created by the external
application, back to GoldSim for analysis. Although currently used by CBP, the DLL is generic and can be
used for a wide variety of external codes that need to be examined probabilistically. Use of the DLL to couple
external codes to GoldSim helps enable improved risk-informed, performance-based decision-making and
supports several of the strategic initiatives in the DOE Office of Environmental Management Engineering &
Technology Roadmap.

INTRODUCTION

The GoldSim Monte Carlo simulation program can interface with external functions in three ways:
a) indirectly through lookup tables, b) values passed to or through Excel spreadsheets, and c) using dynamic-
link libraries (DLLs). A lookup table is designed to represent the output of an external function over a
prescribed domain, but does not provide a direct link to the GoldSim model. The user instead generates tabular
values (of inputs and corresponding outputs) external to GoldSim and uses the results to populate a data table
element within GoldSim. At run-time GoldSim interpolates between these values as an approximation of the
external function. Lookup tables are easy to implement in GoldSim but are constrained to well-behaved
functions involving a small number of inputs.

GoldSim also provides a built-in capability to access cells within an Excel spreadsheet. Values in GoldSim can
be extracted from or placed into cells. GoldSim can also initiate spreadsheet calculations, including initiation
of Visual Basic for Applications (VBA) function calls. The latter can launch Disk Operating System (DOS)
batch files, for example, providing a general capability to parameterize and execute external codes. However,
the GoldSim must link to the external code(s) through several processes that may introduce run-time
vulnerabilities, e.g., opening and modifying a spreadsheet during GoldSim runtime.

The DLL interface is the more general, streamlined, and robust interface to external codes from GoldSim.
However, the GoldSim user is responsible for creating the interface functionality through custom programming

1

WM2011 Conference, February 27 – March 3, 2011, Phoenix, AZ

that follows a GoldSim Application Program Interface (API). To minimize the burden placed on the CBP user,
a generic DLL and accompanying "DLL instruction" language are provided by GoldSim. Low-level interface
coding is hidden from the CBP user, who needs only specific knowledge as to where to place and retrieve
values in external application-specific I/O (input/output) files, as described in the following section.

CBP DYNAMIC-LINK LIBRARY (DLL) DESIGN

The DLL code described in this paper was written in Fortran 90 (compiled using the g95 compiler available at
http://www.gnu.org/) and consists of five files and 20 subroutines. A more detailed explanation for each
subroutine is provided elsewhere by Smith et al. [1]. Operation of the DLL interface is controlled by
instructions provided by the user in a simple text file, typically denoted DLL.dat. An example instructions
file is shown in Fig. 1. This instructions file is tab delimited (required format) into 13 fields. The first field
starts in the first column. Continuation lines are marked by an "&" in the first column; comments are indicated
by an “!”. In Fig. 1 parameters are passed to the executable file (STADIUM® in this case). The following
keywords entered in Field 1 initiate actions in the DLL:

• PUT – Put the data specified within the block into the named file.

• GET – Get the data specified within the block from the named file.

• EXE – Perform the system calls specified within the block.

• RPL – Replace complete lines in the named file.

• SUP – Create a “super” file containing the commands or file names listed within the block.

• LOG – Write a log file (XML format) containing all input and output data.

A command block is terminated by the END statement.

Actions are processed in the order that they appear in the instructions file, and each action can be used multiple
times. Typically, the user would want to change parameters in an input file (using the PUT command) before
running the external program, run the external application that reads from the input file (using the EXE
command), and retrieve results from the external application (using the GET command). The DLL performs
error checking as it processes the instructions it receives.

DLL Design Assumptions

The DLL design conforms to the guidance provided by GoldSim [2] that generally specifies how the external
interface must be constructed to be compatible with GoldSim’s calling conventions. Within these constrictions,
the user adds desired functionality using the commands listed above.

The design of the DLL assumes that the external application reads text files that supply data and control the
calculations performed by the program and writes results to text output files. The formatting of the input and
output files does not matter as long as the location of information in each file can be uniquely identified.
Selected inputs can be modified as needed for desired calculations, and the results can be subsequently
processed. The DLL interface can call external programs that can be run automatically as either an executable
or through a batch file (that calls the executable) without additional user interaction.

2

WM2011 Conference, February 27 – March 3, 2011, Phoenix, AZ

 !

!

#
2

#
3

#
4

#
5

#
6

#
7

#
8

#
9

#
1
0

#
1
1

#
1
2

#
1
3

(
c
o
m
m
e
n
t
)

!
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

P
U
T

S
t
a
d
i
u
m
\
s
t
a
d
0
9
d
-
c
b
p
-
t
a
s
k
7
-
t
e
m
p
l
a
t
e
.
i
n
p

w
h
i
t
e

1
4

r
o
w

1
2
3

c
o
l

3

1
1

1

i
n
p
u
t
s

0
1
4
-
0
2
4

2
5

r
o
w

1
2
3

c
o
l

4

1
1

1

i
n
p
u
t
s

0
2
5
-
0
3
5

4
5

r
o
w

1
3
8

c
o
l

3

9

1

i
n
p
u
t
s

0
4
5
-
0
5
3

5
4

r
o
w

1
3
8

c
o
l

4

9

1

i
n
p
u
t
s

0
5
4
-
0
6
2

8
0

r
o
w

2
7

c
o
l

3

1
7

1

i
n
p
u
t
s

0
8
0
-
0
9
6

9
7

r
o
w

2
7

c
o
l

4

1
7

1

i
n
p
u
t
s

0
9
7
-
1
1
3

1
1
4

r
o
w

1
2

c
o
l

3

2

1

i
n
p
u
t
s

1
1
4
-
1
1
5

1
1
6

r
o
w

1
9

c
o
l

3

3

1

i
n
p
u
t
s

1
1
6
-
1
1
8

1
1
9

r
o
w

9
6

c
o
l

2

1

1

i
n
p
u
t

1
1
9

1
1
9

r
o
w

1
1
9

c
o
l

2

1

1

i
n
p
u
t

1
1
9

E
N
D

!
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

R
P
L

s
t
a
d
0
9
d
-
c
b
p
-
t
a
s
k
7
-
t
e
m
p
l
a
t
e
.
i
n
p

2

.
.
\
.
.
\
S
t
a
d
i
u
m
\
2
0
c
m
-
5
0
c
m
-
m
e
s
h
0
1
.
c
o
r

4

.
.
\
.
.
\
S
t
a
d
i
u
m
\
2
0
c
m
-
5
0
c
m
-
m
e
s
h
0
1
.
e
l
e

E
N
D

!
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

E
X
E

.
.
\
.
.
\
.
.
\
C
o
d
e
s
\
S
t
a
d
i
u
m
\
s
t
a
d
i
u
m
_
2
0
0
9
d
_
C
B
P

&

G
U
I
=
Y
E
S

&

s
t
a
d
0
9
d
-
c
b
p
-
t
a
s
k
7
-
t
e
m
p
l
a
t
e
.
i
n
p

&

C
B
P
0
0
2
B
A
T
C
H

&

s
t
a
d
0
9
d
-
c
b
p
-
t
a
s
k
7
-
t
e
m
p
l
a
t
e
.
o
u
t

E
N
D

!
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

G
E
T

s
t
a
d
0
9
d
-
c
b
p
-
t
a
s
k
7
-
t
e
m
p
l
a
t
e
.
o
u
t
.
x
l
s

s
p
a
c
e

i
g
n
o
r
e

1

v
a
l
u
e

1
.
0

1

-
0
.
1

c
o
l

4

1
0
1

1
1

o
u
t
p
u
t
s

0
0
0
1
-
1
1
1
1

3
3
1
2

v
a
l
u
e

1
.
0

1

-
0
.
1

c
o
l

1
8

1
0
1

9

o
u
t
p
u
t
s

3
3
1
2
-
3
4
1
0

E
N
D

!
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

L
O
G

s
t
a
d
i
u
m
_
2
l
a
y
e
r
s
.
x
m
l

E
N
D

!
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Fig. 1. Example DLL instructions file (e.g., DLL.dat).

3

WM2011 Conference, February 27 – March 3, 2011, Phoenix, AZ

USE OF THE DYNAMIC-LINK LIBRARY

This section provides guidance to using the DLL by describing the commands that can be used in the
instructions file (e.g., DLL.dat).

The PUT and GET Commands

The PUT and GET commands are functionally similar and are described together. As illustrated in Fig. 1, the
name of the file to be processed is listed on the same line as the command in the column (next tab position)
following the keyword. A keyword describing how to delimit fields in the file is provided in the column
following the filename (next tab position). The following delimiter keywords (primarily corresponding to the
delimiters) are recognized: colon, comma, semicolon, space, tab, and white. The keyword “white”
describes any combination of tabs and/or spaces (appearing as “white space”) used to delimit fields. The
delimiter can appear only once following each field with the exception of spaces, which can be inserted
multiple times. If the delimiter keyword is followed by the “ignore” tag, then any delimiter characters
appearing before the first data entry are ignored.

Instructions are provided on the lines below that contain the filename and delimiter description. For each
instruction, pertinent commands are defined using Fields 2 through 12 as described below. A command is
terminated using the END statement.

Field 2: Input arguments are passed from GoldSim (Fig. 2) to the external interface in the inargs()array of
double precision numbers for use by the PUT command. Similarly, output arguments are passed from the
external interface back to GoldSim in the double precision outargs() array using the GET command.
Following the Fortran 90 convention, the starting index of each array is 1. The number in Field 2 indicates the
position in the one-dimensional array representing the parameters in GoldSim (Fig. 2). Scalar inputs and
outputs correspond to a single array argument, vector items are used in the order specified with one argument
per element, and items in matrices are specified item-by-item, from the first row to the last [2].

4

WM2011 Conference, February 27 – March 3, 2011, Phoenix, AZ

Fig. 2. Example of the GoldSim External Link Properties Interface and Corresponding Log File

GoldSim passes all values to and from the external program as double precision real numbers in the
inargs() and outargs() arrays. Passing only numerical values can be restrictive because input files may
contain text strings that may be desirable to change for different reasons and simulations. A simple work
around to this limitation is the ability of the DLL interface to replace entire lines of input with text using the
RPL command described below. The one exception to the GoldSim restriction of passing only double precision
values is that the external function can return an error message to GoldSim in the outargs() array using a
special GoldSim function [2].

For PUT commands, the first two entries in the inargs() array are reserved by GoldSim (as illustrated in Fig.
2) to pass two special parameters to the DLL interface:

1. The first parameter passed in inargs(1) is set by the user within GoldSim to indicate whether
results from individual realizations are saved (inargs(1)>0) or not (inargs(1)=0). If the value
in inargs(1) is 1, a subdirectory named realization_0 is created, if necessary, for the results of
running the external application. If GoldSim is run in probabilistic mode for multiple realizations, the
results saved in the realization_0 subdirectory would be overwritten and only results from the
final realization would be saved. If inargs(1)>0 and GoldSim is run in probabilistic mode with
multiple realizations (1 … n), subdirectories named realization_1 through realization_n+1
are created, if needed, to save results from the realizations.

2. The second parameter passed from GoldSim in inargs(2) is the number of the realization (i.e., the
Run Property denoted Realization in GoldSim). GoldSim allows a single realization to also be run and
analyzed.

The additional parameters used by PUT commands in the instructions file start with inargs(3).

5

WM2011 Conference, February 27 – March 3, 2011, Phoenix, AZ

Field 3 – Field 6: The entries in these fields specify how the row in either the input or output file is identified.
The keywords that may appear in Field 3 are listed in Table I. The information that must appear in Fields 4 – 6
depends on the keyword in Field 3 as explained in the table. The DLL reads record entries as text strings in the
file starting with the first row until the conditions in Table I are satisfied. The data entry at the resulting
location is then used in the PUT or GET command.

Table I. Row Specification in Field 3

Keyword Function

row A number representing the row (or record) number where the data are located is
entered in Field 4. Fields 5 and 6 are left blank.

record A number representing the record (or row) number where the data are located is
entered in Field 4. Fields 5 and 6 are left blank.

label An alphanumeric label identifying the row where the data are located is entered in
Field 4, and a number representing the column where the label is to be read is entered
in Field 5. Field 6 is skipped.

value A number identifying the row where the data are located is entered in Field 4, the
column where the label is to be read is entered in Field 5, and a numeric tolerance on
the value is entered in Field 6. A positive tolerance in Field 6 specifies the absolute
difference used to test if the numerical value in Field 5 has been found while a
negative tolerance indicates a relative difference.

string A character (alphanumeric) string identifying the row where the data is located is
entered in Field 4. The string can appear in any column in the data file.

Field 7 – Field 10: These entries specify how the column in either the input or output files where the data
values are located is identified. The key words that can appear in Field 7 are listed in Table II. The DLL reads
entries in the specified row starting with the first column as text until the specified label is found. The data
entry at this location is then used in the PUT or GET command.

Table II. Column Specification in Field 7

Keyword Function
col The number of the column (or field) where the data are located is entered in Field 8.

Fields 9 and 10 are left blank.
field The number of the field (or column) where the data are located is entered in Field 8.

Fields 9 and 10 are left blank.
heading An alphanumeric label identifying the column where the data are located is entered in

Field 8, and the row where the label is located is entered in Field 9. Field 10 is skipped.
value A numerical value identifying the column where the data are located is entered in Field

8, the row where the value is located is entered in Field 9, and a tolerance on the value
is entered in Field 10 similar to that described in Table I for the value keyword.

Field 11: The number of rows to be used for data processing is entered in this field allowing entering or
reading a row vector using a single command. For example, if a PUT command in the instructions file (e.g.,
DLL.dat in Fig. 1) has the number n in Field 2 and m in Field 11, the value in inargs(n) is written into the
specified data file row and column identified by Fields 3 – 6 and Fields 7 – 10, respectively. The values in

6

WM2011 Conference, February 27 – March 3, 2011, Phoenix, AZ

inargs(n+1) through inargs(n+m–1) are also written into the next (m–1) rows in the same column in
the specified data file.

Field 12: The number of columns to be used for data processing is specified in this field; this enables a single
command to either enter a column vector or, in conjunction with Field 11 (described above), enter a matrix of
values into the specified data file. For example, if a GET command has the number n in Field 2, the number m
in Field 11, and the number p in Field 12, then the value in outargs(n) will be read from the specified data
file row and column identified by Fields 3 – 6 and Fields 7 – 10, respectively. The values of outargs(n+1)
through outargs(n+p–1) will be read from the next (p–1) columns in the same row, and the values of
outargs(n+p) through outargs(n+2p–1) will be read from the same columns in the subsequent row.
This process continues over m rows of data until m×p values from the data file have been read by the DLL
interface.

Field 13: This field can be used to enter an optional comment that is not read or used by the DLL or by
GoldSim.

The RPL Command

The RPL command can be used to replace entire lines in an existing input file. This command provides a
simple work around to the GoldSim limitation of only passing only double precision numbers, the DLL
interface was given the capability of replacing entire lines of input with text using the RPL command. Within
the RPL command block, the entry in Field 2 identifies the line in the input file that will be replaced. The text
starting in Field 3 is used to replace the current line in the input file.

The EXE Command

The EXE command block specifies DOS commands to be executed by the Windows operating system.
Typically the name and relative location of the file (or files) that must be run to execute the external code are
provided in this command. Any arguments that must be passed to the executable are included in the command.

The EXE command can also be used to execute a Windows batch file (i.e., one with the .bat extension) that
contains the necessary executable file(s). Additional commands can be specified to perform other operations,
such as copying, renaming, or moving input and output files as needed.

The SUP Command

The SUP command writes the given text to the specified file. The filename must be provided in the second
column on the same line as the SUP command. The file is created if it is not found or overwritten if it already
exists. For example, this command can be used to create a “super” file of instructions including necessary
filenames that can then be accessed by the external application at runtime.

The LOG Command

The LOG command provides the name of the log file where arrays of the GoldSim input and output data used
in the simulation will be written in XML format as shown in Fig. 2. The log filename must be provided in the
second column on the same line as the LOG command. As also shown in the figure, the realization number is
written to the log file followed by an array of the input data and an array of the output data.

EXAMPLE OF USING THE DYNAMIC LINK-LIBRARY (DLL)

A detailed example of calling an external code is provided to demonstrate the usefulness of the DLL developed
by the CBP. SIMCO Technologies, Inc. developed the numerical model called STADIUM® (Software for
Transport and Degradation in Unsaturated Materials) to predict the transport of ions and liquids in reactive
porous media [3-5]. This state-of-the-art model has been successfully used to predict the degradation of

7

WM2011 Conference, February 27 – March 3, 2011, Phoenix, AZ

unsaturated concrete structures exposed to chemically aggressive environments [3, 6]. The results provided by
STADIUM® have been validated using both laboratory test results and field exposure observations.

GoldSim is run using the instructions file in Fig.1 to produce three realizations of calculations using the
STADIUM code, each for one year of simulation time [1]. Because the DLL replaces values in the input file
specified by the PUT command, the user should supply a template input file for the DLL to manipulate. As
shown previously, the DLL provides flexibility for locating parameters and data within the template file. The
user must either know the locations of input parameters or data to be manipulated within the input file or know
the basic input structure so that the methods described previously can be used.

The example instructions file (DLL.dat in Fig. 1) locates the parameters to be input using row and column
specifications. The main portions of the STADIUM template input file (e.g., RESO, PREL, and INIT blocks)
that are changed by the instructions file are shown in Fig.3. After the DLL executes the RPL and PUT
commands shown in Fig. 1, the modified parts of the template file that was used as the input file for
STADIUM are shown in Fig. 4 in yellow.

8

WM2011 Conference, February 27 – March 3, 2011, Phoenix, AZ

COOR
20cm-50cm-mesh01.cor
ELEM
20cm-50cm-mesh01.ele

RESO
 NUMBER_NUM_PARAM. 14
 integration_pts 2
 tolerance 1.0e-3
 itermax 30
 cartesian_axi 1.0
 Duration_years 10000.0
 Init_time_step_sec 5000.0
 f_sat 3.0
 Tangential_matrix 0.0
 damage 1.0
 physical_cl 0.0
 CO2_level_% 0.0
 Max_time_step_sec 4320000.0
 Step_Adapt_Factor 1.5
 Step_Adapt_Crit 5e-3

PREL
 N_PREL_GROUP 2
 N_PREL 18
 temperature 23.0 23.0
 W/B 0.38 0.595
 Binder 405.0 930.0
 aggregates 1659.0 0.0
 Binder_density 2885.0 2603.5
 Porosity 0.135 0.65
 Permeability 18.0e-22 4000.0e-22
 oh_diff_coef 1.40e-11 7.5e-11
 Isotherm_b -25.9280 -6.4651
 Isotherm_c 0.4285 1.7825
 Relative_perm 18.0 18.0
 init_hydrat 28.0 28.0
 tref_meas 28.0 28.0
 hydrat_a 0.8 0.3
 hydrat_alpha 0.015 0.003
 k_thermal 2.00 2.00
 spec_heat 1000.0 1000.0
 ex_rate_CO2 1.0e-5 1.0e-5

INIT
 external_file 0
 OH 400.0 670.08
 Na 282.1 4420.0
 K 138.0 120.0
 SO4 8.0 130.7
 Ca 0.5 0.41
 Al(OH)4 0.1 0.14
 Cl 5.0 9.0
 H2SiO4 0.0 9.7
 CO3 0.0 2.9
 NO3 0.0 2000.0
 NO2 0.0 1575.0
 Rel_Humidity 1.0 1.0
 Potential 0.0 0.0
 Temperature 23.0 23.0

 Portlandite 13.6 41.9
 CaH2SiO4 37.9 103.3
 Ettringite 0.0 28.6
 Monosulfate 19.4 0.0
 C4AH13 14.8 0.0
 Thaumasite 0.0 0.0
 Calcite 0.0 4.8
 Monocarboaluminate 0.0 11.0
 Gypsum 0.0 0.0

Fig. 3. Pertinent data blocks from the STADIUM template file (i.e., the RESO, PREL, and INIT Blocks)

9

WM2011 Conference, February 27 – March 3, 2011, Phoenix, AZ

COOR
..\..\Stadium\20cm-50cm-mesh01.cor
ELEM
..\..\Stadium\20cm-50cm-mesh01.ele

RESO
 NUMBER_NUM_PARAM. 14
 integration_pts 2
 tolerance 1.0e-3
 itermax 30
 cartesian_axi 1.0
 Duration_years 1
 Init_time_step_sec 5000
 f_sat 3.0
 Tangential_matrix 0.0
 damage 1.0
 physical_cl 0.0
 CO2_level_% 0.0
 Max_time_step_sec 4320000
 Step_Adapt_Factor 1.50000E+00
 Step_Adapt_Crit 5.00000E-03

PREL
 N_PREL_GROUP 2
 N_PREL 18
 temperature 23 23
 W/B 3.80000E-01 5.95000E-01
 Binder 405 930
 aggregates 1659 0
 Binder_density 2885 2.60350E+03
 Porosity 1.35000E-01 6.50000E-01
 Permeability 1.80000E-21 4.00000E-19
 oh_diff_coef 1.40000E-11 7.50000E-11
 Isotherm_b -2.59280E+01 -6.46510E+00
 Isotherm_c 4.28500E-01 1.78250E+00
 Relative_perm 18 18
 init_hydrat 28 28
 tref_meas 28 28
 hydrat_a 8.00000E-01 3.00000E-01
 hydrat_alpha 1.50000E-02 3.00000E-03
 k_thermal 2 2
 spec_heat 1000 1000
 ex_rate_CO2 1.0e-5 1.0e-5

INIT
 external_file 0
 OH 400 6.70080E+02
 Na 2.82100E+02 4420
 K 138 120
 SO4 8 1.30700E+02
 Ca 5.00000E-01 4.10000E-01
 Al(OH)4 1.00000E-01 1.40000E-01
 Cl 5 9
 H2SiO4 0 9.70000E+00
 CO3 0 2.90000E+00
 NO3 0 2000
 NO2 0 1575
 Rel_Humidity 1.0 1.0
 Potential 0.0 0.0
 Temperature 23.0 23.0

 Portlandite 1.36000E+01 4.19000E+01
 CaH2SiO4 3.79000E+01 1.03300E+02
 Ettringite 0 2.86000E+01
 Monosulfate 1.94000E+01 0
 C4AH13 1.48000E+01 0
 Thaumasite 0 0
 Calcite 0 4.80000E+00
 Monocarboaluminate 0 11
 Gypsum 0 0

Fig. 4. STADIUM input blocks after execution of the RPL and PUT commands in DLL.dat (Fig. 1)

10

WM2011 Conference, February 27 – March 3, 2011, Phoenix, AZ

After running STADIUM using the EXE command as shown in Fig.1 for the inputs defined by the user (e.g.,
those in Fig. 4), the external code creates a set of output files where the simulation results are written. The
main output file (Fig. 5) has a .xls file extension (note that the file is not in Microsoft Excel format) [4]. As
illustrated in Fig. 5, the results are provided in columns making either graphing the results using an external
program or reading the results using the DLL straightforward. The results from different time steps are
separated by a blank line. The columns of interest here are:

• A: time increment for which the solution is saved to the output file, in years or seconds.

• D – K: concentration of each ionic species, in mmol/L.

• O – W: content of each of the nine solid phases considered in the calculations, in g/kg material.

The other columns in the STADIUM output file are described in detail elsewhere [4].

Fig. 5. An example of the main STADIUM output file read into Microsoft Excel

The GET command was used (via the DLL) to retrieve concentrations of the 11 chemicals and nine minerals
used by STADIUM at each node location at time one year. The outargs() array that returns results to
GoldSim is sufficiently large to return the necessary concentrations at each time step. The GoldSim results for
one selected mineral (Ettringite) and one selected chemical (SO4) are illustrated in Fig. 6.

11

WM2011 Conference, February 27 – March 3, 2011, Phoenix, AZ

Fig. 6. GoldSim plot of STADIUM results after one year for one mineral (Ettringite) and one chemical (SO4)

CONCLUSIONS

The CBP Project is focused on characterizing and reducing uncertainties in the current methodologies for
assessing cementitious barrier performance as well as increasing the consistency and transparency of the
overall assessment processes. To better represent uncertainties in the models used to predict barrier
performance, GoldSim was selected as a probabilistic framework with interfaces to external computer codes
for specific cementitious barrier calculations. A general dynamic-link library (DLL) interface has been

12

WM2011 Conference, February 27 – March 3, 2011, Phoenix, AZ

developed by the CBP to link GoldSim to external codes during runtime. The DLL is designed to take a list of
code inputs from GoldSim, create an input file for the external application, run the external code, and return a
list of outputs that is read from the text files created by the external application, back to GoldSim for analysis.
Although currently used by CBP, the DLL can be used for a wide variety of external codes to be examined
probabilistically.

The process of GoldSim calling a state-of-the-art external code (in this case, the STADIUM® model) is
demonstrated to highlight the usefulness of the DLL developed by the CBP. SIMCO Technologies, Inc.
developed the STADIUM model to predict the transport of ions and liquids in reactive porous media. Use of
the DLL to couple external codes to GoldSim helps enable improved risk-informed, performance-based
decision-making and supports several of the strategic initiatives in the DOE Office of Environmental
Management Engineering & Technology Roadmap.

ACKNOWLEDGEMENTS AND DISCLAIMER

This report was prepared for the United States Department of Energy under Interagency Agreement No. DE-
AI09-09SR22667 and is an account of work performed under that contract. Reference herein to any specific
commercial product, process, or service by trademark, name, manufacturer, or otherwise does not necessarily
constitute or imply endorsement, recommendation, or favoring of same by Savannah River Nuclear Solutions
or by the United States Government or any agency thereof. The views and opinions of the authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency thereof. This
report is part of a larger multi-investigator project supported by the U. S. Department of Energy entitled the
Cementitious Barriers Partnership. The opinions, findings, conclusions, or recommendations expressed herein
are those of the authors and do not necessarily represent the views of the U.S. Department of Energy. This
work was also partially supported by the National Institute of Standards and Technology Sustainable Concrete
Materials program.

and

This report is based on work supported by the U. S. Department of Energy, under Cooperative Agreement
Number DE-FC01-06EW07053 entitled ‘The Consortium for Risk Evaluation with Stakeholder Participation
III’ awarded to Vanderbilt University. The opinions, findings, conclusions, or recommendations expressed
herein are those of the author(s) and do not necessarily represent the views of the Department of Energy or
Vanderbilt University.

Disclaimer: This work was prepared under an agreement with and funded by the U. S. Government. Neither
the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes
any express or implied: 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use
or results of such use of any information, product, or process disclosed; or 2. representation that such use or
results of such use would not infringe privately owned rights; or 3. endorsement or recommendation of any
specifically identified commercial product, process, or service. Any views and opinions of authors expressed in
this work do not necessarily state or reflect those of the United States Government, or its contractors, or
subcontractors, or subcontractors.

REFERENCES

1. F.G. SMITH III, G. FLACH, AND K.G. BROWN, "CBP Code Integration GoldSim DLL Interface”,
CBP-TR-2010-009-2, Rev. 0. Savannah River National Laboratory and Vanderbilt University/CRESP;
Cementitious Barriers Partnership: Aiken, SC and Nashville, TN (2010).

2. GTG, “GoldSim User's Guide: Probabilistic Simulation Environment (Volume 1 of 2; Version 10.0)”,
GoldSim Technology Group (2009).

3. J. MARCHAND, E. SAMSON, Y. MALTAIS, R. LEE, AND S. SAHU, “Predicting the performance of
concrete structures exposed to chemically aggressive environment—Field validation”, Materials and
Structures, 35(10): pp. 623-631 (2002).

13

WM2011 Conference, February 27 – March 3, 2011, Phoenix, AZ

14

4. SIMCO, “Software for Transport And Degradation in Unsaturated Materials (STADIUM) Version 2.8
User Guide”, SIMCO Technologies, Inc. (2008).

5. CBP, “Description of the Software and Integrating Platform (Contains 4 Chapters),” CBP-TR-2009-003,
Rev. 0, Cementitious Barriers Partnership, Available from: http://cementbarriers.org/reports.html (2009).

6. E. SAMSON AND J. MARCHAND, “Modeling the transport of ions in unsaturated cement-based
materials”, Computers & Structures, 85(23-24): pp. 1740-1756 (2007).

