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ABSTRACT 
 
The management of contaminated groundwater systems requires an understanding of their response to alternative 
remediation strategies. Such understanding requires the collection of suitable data to help characterize the system 
and monitor its response to existing and future cleanup and/or containment options. It also requires incorporating 
such data in suitable models of water flow and contaminant transport. As the collection of subsurface 
characterization and monitoring data is costly, it is important that the design of corresponding data collection 
schemes be cost-effective, i.e., that the expected benefit of new information exceed its cost. A major benefit of new 
data is its potential to help improve one's understanding of the system, in large part through a reduction in model 
predictive uncertainty. Traditionally, value-of-information or data-worth analyses have relied on a single 
conceptual-mathematical model of site hydrology. Yet there is a growing recognition that analyses and predictions 
based on a single hydrologic concept are prone to statistical bias and underestimation of uncertainty. This has led to 
a recent emphasis on conducting hydrologic analyses and rendering corresponding predictions by means of multiple 
models. We describe a multimodel approach to optimum value-of-information or data-worth analyses based on 
model averaging within a Bayesian framework. The Bayesian model averaging (BMA) approach is compatible with 
both deterministic and stochastic models; in its maximum likelihood version (MLBMA) it is additionally consistent 
with current statistical methods of hydrologic model calibration. Implementation entails either Monte Carlo 
simulation or linearization. We describe the MLBMA approach and implement it computationally on a synthetic 
example with and without linearization. 
 
INTRODUCTION 
 
The DOE faces a daunting challenge insuring that contaminants in the subsurface do not pose unacceptable future 
risks to humans and the environment. To quantify and manage such risks one must understand their relationships to 
alternative remediation schemes. This in turn requires the collection of suitable data to help characterize the 
subsurface and monitor its response to existing and future site remediation and management options. It also requires 
incorporating such data in suitable models of subsurface flow and contaminant transport.  
 
As noted by Back [1], three strategies have traditionally been used to determine the magnitude of a data collection 
effort: minimizing cost for a specific level of accuracy or precision, minimizing uncertainty for a given budget, or 
responding to regulatory demands on data quantity and quality. Various combinations of these strategies have also 
been described such as a fitness-for-purpose approach [2]. Many today prefer a fourth approach based on value-of-
information or data-worth analysis. Here the decision to collect additional data, or the design of a data collection 
program, is based on cost-effectiveness. A program is considered cost-effective if the expected benefit from the new 
information exceeds its cost. A major benefit of new data is its potential to help improve one's understanding of the 
system, in large part through a reduction in model predictive uncertainty. This benefit, however, justifies the cost 
only if it has the potential to impact decisions concerning site remediation and management in a substantive way.  
 
Value-of-information or data-worth analyses incorporating statistical decision theory have been applied to various 
water-related problems starting in the 1970s and to groundwater problems as of the 1980s. More recent applications 
to groundwater resource and contamination issues have been reported, among others, in [3, 4]. James and Freeze [5] 
proposed a Bayesian decision-making framework to evaluate the worth of data in the context of contaminated 
groundwater that has been widely cited in the subsequent literature. A comprehensive review focusing on health risk 
assessment can be found in [6]. Additional recent publications of relevance include [7, 8]. 
 
A major limitation of many existing approaches is that they rely on a single conceptual-mathematical model of the 
subsurface and flow/transport processes therein. Yet the subsurface is open and complex, rendering its 
characteristics and corresponding processes prone to multiple interpretations and mathematical descriptions, 
including parameterizations. This is true regardless of the quantity and quality of available data. Predictions and 
analyses of uncertainty based on a single hydrologic concept are prone to statistical bias (by committing a Type II 



WM2011 Conference, February 27 - March 3, 2011, Phoenix, AZ 
 

error through reliance on an inadequate model) and underestimation of uncertainty (by committing a Type I error 
through under sampling of the relevant model space). Analyses of environmental data-worth which explore how 
different sets of conditioning data impact the predictive uncertainty of multiple models in a Bayesian context include 
[9, 10]; whereas Freer et al. [9] employ Generalized Likelihood Uncertainty Estimation (GLUE) [11], Rojas et al. 
[10] combine GLUE with Bayesian Model Averaging (BMA; [12]). Nowak et al. [13] introduce a Bayesian 
approach to data worth analysis when flow and transport take place in a random log hydraulic conductivity field. 
Whereas in their analysis flow and transport are described by a single (linearized) model each having known 
parameters, other than those describing spatial variations in log hydraulic conductivity, the latter is characterized by 
a single drift model and a continuous family of variogram models having uncertain parameters. 
 
In a similar spirit, we describe in this paper a multimodel approach to optimum value-of-information or data-worth 
analyses that is based on model averaging within a Bayesian framework. Our approach is general in that it considers 
multiple models of any kind, all having uncertain parameters; whereas parameterizing models in the manner of [13] 
is elegant and computationally efficient, it is unfortunately limited to a narrow range of variogram models and does 
not, generally, apply to other models such as those of flow and transport. We prefer BMA over GLUE because it (a) 
rests on rigorous statistical theory, (b) is compatible with deterministic as well as stochastic models and, (c) in its 
maximum likelihood (ML) version (MLBMA), is consistent with current ML methods of hydrologic model 
calibration. Whereas BMA (like the closely related approach in [13]) relies heavily on prior parameter statistics, 
MLBMA can do without such statistics or otherwise update them on the basis of potential new data both before and 
after they are collected. We describe the proposed MLBMA approach and illustrate it on a synthetic example. Our 
proposed methodology should be of help in designing the collection of hydrologic characterization and monitoring 
data in a cost-effective manner by maximizing their benefit under given cost constraints. The benefit would accrue 
from optimum gain in information, or reduction in predictive uncertainty, upon considering jointly not only 
traditional sources of uncertainty such as those affecting model parameters and the reliability of data but also, most 
importantly, lack of certainty about the conceptual-mathematical models that underlie the analysis and the scenarios 
under which the system would operate in the future. The methodology should apply to a broad range of models 
representing natural processes in ubiquitously open and complex earth and environmental systems. 
 
BACKGROUND 
 
Bayesian Decision Analysis Framework 
 
One way to cast the data-worth issue is within a Bayesian risk-cost-benefit decision framework such as that of 
Freeze et al. [14, 15]. Suppose without loss of generality that the data are intended to help one decide whether or not 
a contaminated site should be remediated. This decision problem is illustrated in Fig. 1 [1] by a decision tree in 
which  is the decision objective;  is an objective function associated with each decision alternative Φ iΦ ( )1,2i =  
defined as 

i i i iB C PCfiγΦ = − −  (Eq. 1)  
where  is the benefit and  the investment cost, risk being expressed as the product iB iC i iPCfγ  of a risk aversion 
factor γ , the probability of failure  and the cost of failure ; iP iCf C+  designates a contaminated and C− an 
uncontaminated state of the site; costs and benefits occurring at the triangular terminal nodes (only the cost of failure 
is indicated in the Fig.). Collecting additional information generally causes the risk term to decrease due to a 
decrease in the probability of failure. The corresponding increase in iΦ  is the expected value (worth) of the new 
data. The final outcome of the analysis depends on the choice of decision rule one adopts; for example, maximizing 

 would result in the largest benefit and lowest cost.  iΦ
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Fig. 1. Decision tree (after [1]). 
 
According to Back [1] the Bayesian approach to data-worth analysis entails five steps: (1) defining one or more data 
collection (sampling) programs, (2) postulating a prior probability for the state of the site (e.g, contaminated or 
uncontaminated), (3) using Bayes' theorem to update the prior probability to a posterior probability conditional on 
the new data, corresponding to each data collection program, (4) estimating corresponding costs and benefits, and 
(5) computing the worth of data or value of information using a given decision model and using the results to 
optimize the data collection scheme. Back [1] also considers using linearized estimation of uncertainty to update the 
prediction variance in step 3. 
 
As noted, collecting additional information generally reduces risk due to a decrease in the probability of failure. A 
reduction in the probability of failure comes about through a reduction in uncertainty about the expected system 
state, present or future. The impact of hydrologic data on this expectation and the associated uncertainty are often 
evaluated by means of a hydrologic model. Commonly, the model is considered to be certain while its parameters 
(and in some cases its forcing terms such as sources and boundary conditions) are treated as being uncertain due to 
insufficient and error-prone data. As already noted, we know of only one work that considers the impact of data on 
model predictive uncertainty within a Bayesian framework by considering the model itself to be uncertain [9] and 
one other work that parameterizes this uncertainty [13]. Below we provide background about Bayesian model 
averaging and its maximum likelihood version which we propose to employ for this same purpose.  
 
Bayesian Model Averaging (BMA) 
 
Consider a random vector, , the multivariate statistics of which are to be predicted with a set M of K mutually 
independent models, 

Δ
kM , each characterized by a vector of parameters , conditional on a discrete set of data, D 

(the case of correlated models has recently been considered in [16]). In analogy to the case of a scalar 
kθ

Δ  [12] we 
write the joint posterior (conditional) distribution of Δ  as 

( ) ( ) (
1

,
K

k k
k

p p M p M
=

= ∑Δ D Δ D )D , (Eq. 2) 

i.e., as the average over all models of the joint posterior distributions ( ), kp MΔ D  associated with individual 

models, weighted by the model posterior probabilities ( )kp M D . These weights are given by Bayes’ rule in the 
form 

( ) ( ) ( )

( ) ( )
1

k k
k K

l l
l

p M p M
p M

p M p M
=

=

∑

D
D

D
 (Eq. 3) 

where 
( ) ( ) ( ),k k k k kp M p M p M d= ∫D D θ θ θk  (Eq. 4) 

is the integrated likelihood of model kM , ( ),k kp MD θ  being the joint likelihood of this model and its 

parameters, ( k kp Mθ )  the prior density of  under model kθ kM ,  and ( )kp M  the prior probability of kM . All 
probabilities are implicitly conditional on the choice of models entering into the set M. 
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The posterior mean and covariance of  are given by Δ

( ) ( ) (
1

,
K

k k
k

E E M p M
=

= ∑Δ D Δ D )D , (Eq. 5) 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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Cov Cov M p M

E M E E M E p M

=

=

=

⎡ ⎤ ⎡ ⎤+ − −⎣ ⎦ ⎣ ⎦

∑

∑

Δ D Δ D D

Δ D Δ D Δ D Δ D Dk

    (Eq. 6) 

where the superscript T denotes transpose. (Eq. 6) is a discrete expression of the law of total covariance, 
( ) ( ) ( ),

k kkM MCov E Cov M Cov E M= +D DΔ D Δ D Δ D, k , (Eq. 7) 

where ( ,
k kME Cov MD Δ D )  is the within-model component of ( )Cov Δ D  and ( ,

k kMCov E MD Δ D )  is its between-
model component. We also consider the trace 

( ) ( ) ( ),
k kkM MTr Cov Tr E Cov M Tr Cov E M⎡ ⎤ ⎡⎡ ⎤ = +⎣ ⎦ ⎣ ⎦ ⎣D DΔ D Δ D Δ D, k

⎤
⎦  (Eq. 8) 

which provides a scalar measure of the posterior variance of Δ . The latter is of interest because, for  (multiple 
models), one generally has 

1K >

( ), 0
k kMTr Cov E M⎡ ⎤ >⎣ ⎦D Δ D  so that ( ) ( , kM )

kMCov Tr E CovTr ⎡ ⎤⎡ ⎤ >⎣ ⎦ ⎣ ⎦DΔ D Δ D . Hence 

the consideration of multiple models generally results in greater predictive uncertainty, as measured by 
( )Tr Cov⎡⎣ Δ D ⎤⎦ , than the uncertainty associated with a single model, as measured by ( )kM,CovTr ⎡ ⎤⎣ ⎦Δ D . 

 
Maximum Likelihood Bayesian Model Averaging (MLBMA) 
 
BMA defines the integrated likelihood ( kp MD )  of model kM  entirely in terms of the prior parameter density 

( k kp Mθ )  of model parameters, having thus no provision for the conditioning of model parameters on 
measurements D (i.e., for the estimation of optimum model parameters on the basis of D using inverse methods). 
Instead, it requires computing the integral in (Eq. 4) through exhaustive sampling of the prior parameter space  
for each model followed by numerical integration. One way to resolve both issues is to replace  by an estimate, 

kθ

kθ
ˆ D

kθ , which maximizes the likelihood ( ,k kp MD θ ) . Obtaining such maximum likelihood (ML) estimates entails 
calibrating each model against (conditioning on) the data D using well-established statistical inverse methods. 
Approximating ( ), kp MΔ D  by ( , k )ML

p MΔ D , where the subscript indicates ML estimation of , was shown to 

be useful (for a scalar ) in the statistical literature. Neuman [17] proposed evaluating the weights 
kθ

Δ ( kp M D)  based 
on a result due to Kashyap [18] according to [19] 

( ) ( )
( )

( )1

1exp
2

1exp
2

D
k k

k k ML K D
l ll

KIC p M
p M p M

KIC p M

δ

δ
=

⎛ ⎞−⎜ ⎟
⎝ ⎠=

⎛ ⎞−⎜ ⎟
⎝ ⎠

∑
D D         (Eq. 9) 

where 
min

D D D
k kKIC KIC KICδ = − ,        (Eq. 10) 

( ) ( ) ( )ˆ ˆ2 ln , 2 ln ln ln
2

D
D D D
k k k k k k k k MLML ML

NKIC p M p M N M
π

⎛ ⎞
= − − + +⎜ ⎟

⎝ ⎠
D θ θ F D , (Eq. 11) 

D
kKIC  being the so-called Kashyap model selection (or information) criterion for model kM , min

DKIC  its minimum 

value over all candidate models, and ( ) ( )2ln , 2 lnk k k kML
p M p M− −D θ θ

ML
 a negative log likelihood incorporating 

prior measurements of the parameters (if available), evaluated at ˆ D
kθ . Here  is the dimension of  (number of 

adjustable parameters associated with model 
kN kθ

kM ), DN  is the dimension of D (number of discrete data points, which 
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may include measured parameter values), and  is the normalized (by kF DN ) observed (as opposed to ensemble 
mean) Fisher information matrix having components 

( )2

,
ˆ

ln ,1

D
k k

k k
k nm D

n m

p M
F

N θ θ
=

⎡ ⎤∂
= − ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦θ θ

D θ
.      (Eq. 12) 

In the limit of large , /D
kN N D

kKIC  reduces asymptotically to the so-called Bayesian selection (or information) 
criterion (e.g. [20] ) 

( )ˆ2 ln , lnD D
k k k ML

BIC p M N N= − +D θ D
k . (Eq. 13) 

 
EFFECT OF DATA AUGMENTATION ON UNCERTAINTY 
 
We now ask the question how would an augmented data base { }, ′D C , where ′C  is a potential new dataset not 
presently available (and thus unknown), impact the above MLBMA uncertainty analysis. We address the question 
through MLBMA prediction of , denoted by C, and assessment of the corresponding predictive uncertainty. Our 
proposed analysis entails the following steps: 

′C

1. Postulate a set M of K mutually independent models, kM , with parameters kθ  for the desired output 
vector, Δ ; 

2. Obtain ML estimates ˆ D
kθ  of kθ  by calibrating each kM  against available data D through minimization of 

the log likelihood ( ) ( )k kp M− θ , then compute a corresponding estimation 

covariance 

2 ln , 2 lnp M −θD
D
kΓ  and D

kKIC ; 
k k

3. Compute ( ) ( ) ( )D
l l1

1 1exp / exp
2 2D

KD
k lMLk kM KIC p M KICδ δ

=

⎛= − −⎜∑Dp p M⎞
⎟  where the subscript MLD 

designates the ML estimation process in step 2; 

⎛ ⎞
⎜ ⎟
⎝ ⎠ ⎝ ⎠

4. For each model kM  estimate ( ), Dk ML
MD  and E Δ ( ), Dk ML

Co MD  either through linearization or via 
Monte Carlo simulation (both options are explored in our synthetic example below):  

v Δ

a. Draw random samples (realizations) of kθ  from a multivariate Gaussian distribution with mean 
ˆ D

kθ  and covariance D
kΓ ; 

b. Estimate ( ), ,k k DML
E MΔ D θ  and ( ), ,k k DML

Cov MΔ D θ  for each realization of kθ ; 

c. Average over all realizations of kθ  to obtain sample estimates of ( ), Dk ML
E MΔ D  and 

( ), Dk ML
Cov MΔ D ; 

5. Compute ( ) DML
E Δ D , ( ) DML

Cov Δ D  and/or ( ) DML
Tr Cov⎡ ⎤⎣ ⎦Δ D ; 

6. Postulate a set P of I alternative geostatistical, statistical or stochastic models, iP , with parameters iπ  for a 
potential (presently unavailable) data set C; the models iP  may be independent of kM , may form 
extensions of kM  or may coincide with the latter as in the computational examples described below; 

7. Predict multivariate statistics of C, conditional on D, via MLBMA by means of the model set P using a 
procedure paralleling that described for Δ  in steps 2 – 6; 

8. Estimate ( ) ,, D CML
E Δ D C  and ( ) ,, D CML

Co D C , where the subscript ,v Δ D CML  designates the ML estimation 

process in step 2 with respect to an augmented data set { },D C , either through linearization followed by 
step 10 or via Monte Carlo simulation by using the statistics of C from step 7 to generate random 
realizations of C (both options are explored in our synthetic example); for each realization and for each 
model kM : 

a. Obtain ML estimates ,ˆ D C
kθ  of kθ  by minimizing this negative log likelihood with respect to kθ , 

then compute the corresponding estimation covariance ,D C
kΓ  and ,D C

kKIC ; 
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b. Compute ( ) ,, D Ck ML
p M D C ; 

c. For each model kM  estimate ( ) ,, , D Ck ML
E MΔ D C  and ( ) ,, , D Ck ML

Cov MΔ D C  via Monte Carlo 
simulation:  

i. Draw random samples (realizations) of kθ  from a multivariate Gaussian distribution with 

mean ,ˆ D C
kθ  and covariance ,D C

kΓ ; 

ii. Estimate ( ) ,, , ,k k D CML
E MΔ D C θ  and ( ) ,, , ,k k D CML

Cov MΔ D C θ  for each realization of 

kθ ; 

iii. Average over all realizations of kθ  to obtain sample estimates of ( ) ,, , D Ck ML
E MΔ D C   

and ( ) ,, , D Ck ML
Cov MΔ D C ; 

d. Compute ( ) ,, D CML
E Δ D C , ( ) ,, D CML

Cov Δ D C and/or ( ) ,, D CML
Tr Cov⎡ ⎤⎣ ⎦Δ D C ; 

9. Average over all realizations of C to obtain sample estimates of ( ) ,D CML
E Δ D , ( ) ,D CML

Cov Δ D  and/or 

( ) ,D CML
Tr Cov⎡ ⎤⎣ ⎦Δ D ; 

10. Repeat steps 6 - 9 for different sets  of potential data and select that set which maximizes the 

difference 
1 2 3, ,C C C K

( ) ( ) ( ) ,D CML
Tr ⎤

⎦  between the trace 

conditional on D and the expected trace conditional on D and C (this step is outside the scope of the present 
paper). 

, ,, ,D C D CML ML
Cov E Tr E Cov⎡⎡ ⎤= −⎣ ⎦ ⎣C D C DΔ D C D Δ D CTr Cov⎡ ⎤
⎣ ⎦ Δ

 
SYNTHETIC GEOSTATISTICAL EXAMPLE 
 
We implement the above procedure of assessing data-worth by considering multiple variogram  models 
(representing alternative assumptions about the spatial structure) of a zero-mean spatially correlated random field 
(such as the natural logarithm of hydraulic conductivity), ( )Z x , having point support (scale of measurement) in two 

dimensions, ( )1 2, Tx x=x . In particular, we use a modified version of the sequential Gaussian simulation code 
SGSIM [21] to generate an unconditional realization of Z on a grid of 50 50×  nodes using a truncated power 
variogram model with Gaussian modes (TpvG) given in [22], 

( ) ( )
2 2

2; 1 exp 1 ,
4 4 4

H

u u
u u u

s s ss
2

π π πγ λ σ λ
λ λ λ

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − + Γ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

H 0 1H             < <  (Eq. 14) 

where 1 2s = −x x  is separation distance (lag) between Z values at any two points  and , 1x 2x uλ  is an upper cutoff 

scale proportional to domain size, A is a coefficient, H is a Hurst scaling exponent, ( )2 2 / 2H
u uA Hσ λ λ=  is variance 

(sill) and  is the incomplete gamma function. The corresponding integral (spatial correlation) scale is ( ),Γ ⋅ ⋅

(2 /u u( ) )1 2I Hλ λ=
2σ

H )+

0.45=

D

. We set the parameters of the TpvG model equal to  which 

correspond to  and . We then generate a "true" sample of 2,500 Z values at  nodes of a 
square grid, spaced a unit distance apart, as shown in Fig. 2. After verifying that a sample variogram based on all the 
generated values reproduces the original TpvG very closely we select 100 Z values at randomly located nodes to 
comprise a vector  of “available” data, 20 values to form a vector 

( )u= = (, 1,0.25,λ

50×

,A H 0.

50

5T Tθ

1.67I =

′C  at other randomly located “potential new” 
sampling nodes (in real applications these locations will not be random but optimized in step 10 of our proposed 
procedure), and those at the remaining 2,380 nodes to make up a vector Δ  of "unknown" values that we wish to 
predict. The latter is based either on D or on { },D C  where C are values simulated randomly at the “potential new” 
sampling nodes conditional on D. 
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Fig. 2. "True" random field Z (colored) generated using TpvG with at 2500 grid nodes (shown). D represent 
locations of "available" data and C those of "potential new" data. 

 
To predict  we consider a set  of  alternative variogram models, Δ M 3K = kM , having parameters  (purposely 
excluding the generating, or “true,” TpvG model): exponential (Exp), Gaussian (Gau) and spherical (Sph) [e.g. 19]. 
Each model, 

kθ

kM , is assigned an equal prior probability, ( ) 1/ 3kp M = , and is calibrated against  to yield ML 

estimates  of  by minimizing the joint negative log likelihood (NLL) 

D
ˆ

k
Dθ kθ ( )2ln ,k kp MD θ− . The process, denoted 

by DML , also yields corresponding  parameter estimation covariance matrices D
kΓ , Kashyap criteria kKICD  and 

Bayesian criteria . For comparison we also compute information theoretic criteria k
DBIC

( )2ln 2D
k k ML kAIC p M N= − +D  (Eq. 15) 

( ) 2 ( 1)
2ln 2

1
D k k
k k kML

z k

N N
AICc p M N

N N
+

= − + +
− −

D  (Eq. 16) 

introduced, respectively, by Akaike [23] and Hurvich and Tsai [24]. kKICD  and  are used to compute posterior 
model probabilities (or, in the case of 

kBICD

kAICD  and kAICcD , model weights), ( | ) Dk ML
Dp M

k

, for each model. The 
results, listed in Table 1, indicate that the sample D of available data is not large enough to reproduce correctly the 
TpvG model used to generate it; the corresponding sample and fitted variograms underestimate the true sill and 
overestimate the true integral scale. All criteria favor the spherical model, assigning a very low posterior probability 
(or weight) to the Gaussian model. Our model averaged results are based on KICD . 
 
Augmenting the sample to include {  yields results listed in Table 2. They show that such data augmentation is 
still not enough to reproduce correctly the TpvG model; the sample and fitted variograms underestimate the true sill 
to a greater extent than was the case with D alone but overestimate the true integral scale to a lesser extent. The 
preference of all criteria for the spherical model is now more pronounced (less ambiguous) than it was in the case of 
D. These results indicate a need to account for the effect of potential new data on parameter estimation and model 
weighting, as we do next.  

}, ′D C
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Table 1. Parameter estimates; negative log likelihoods NLL; model selection criteria AIC, AICc, BIC and KIC; prior 
and posterior model probabilities; and rankings of variogram models based on D. 

 
Model  Exp Gau Sph 

Sill Estimate 0.404 0.401 0.399 
std* of Sill 0.226 0.233 0.222 
Integral Scale Estimate 3.686 1.979 2.681 
std* of Integral scale 0.574 0.187 0.283 
NLL -145.14 -136.13 -147.23 
NLL Rank 2 3 1 

( )kp M   1/3  1/3  1/3 
AIC -139.14 -130.13 -141.23 
AIC Rank 2 3 1 

( )k AIC
p M D  25.98% 0.29% 73.74% 

AICc -138.91 -129.90 -141.00 
AICc Rank 2 3 1 

( )k AICc
p M D  25.98% 0.29% 73.74% 

BIC -131.04 -122.03 -133.12 
BIC Rank 2 3 1 

( )k BIC
p M D  25.98% 0.29% 73.74% 

KIC -146.89 -135.94 -147.29 
KIC Rank 2 3 1 

( )k KIC
p M D  44.92% 0.19% 54.90% 

* std represents standard deviation 
 
Predictions of Δ  are uncertain due to random spatial fluctuations in Z as well as uncertainty about the variogram 
model, kM , and its parameters, . As  is generally nonlinear in , one can estimate its lead moments either 
through linearization or via Monte Carlo simulation. We start with the latter option by drawing  random 

realizations, 

kθ Δ kθ
2,000Rθ =

r
k
θθ , of  from a multivariate normal distribution kθ ˆ~ ( , )D D

kk kΓθ θN  where 1, 2r , Rθ θK=  for each kM ; 

obtaining kriging (minimum variance unbiased linear) estimates ( ), , r
p k k DML

E M θD θΔ  and kriging (estimation) 

variances ( ), , r
p k k DML

θθVar  and covariances MDΔ ( )r
k, ,kp q DML

Co  for all components v MΔ Δ D θθ pΔ q and Δ  of Δ ; 

averaging these over all Rθ  realizations to obtain ( ), Dp k ML
E MΔ D , ( ), Dp q k ML

Cov Δ Δ MD , 

( ), , r
kp q k DML

Cov Δ Δ θM θD ; verifying that 2,000θR =  is large enough for ( )k ML
, M DTr Cov⎡ ⎤⎣ ⎦Δ D  to stabilize for 

each model; and computing the model-averaged quantities ( ) Dp ML
E Δ D and ( ) Dp q ML

Co .  v Δ Δ D

A similar procedure is used to obtain ( ) ,, D Cp ML
E ′

′Δ D C  and ( ) ,, D Cp q ML
Cov ′

′Δ Δ D C  where, we recall, ′C  are  

additional data yet to be collected (known a priori in our example). Fig. 3 shows how the difference 
( ) ( ) ,,D D Cp pML ML

Var Var ′
′Δ − ΔD D C  varies across the grid. It is seen that enlarging the data base from 100 (the 

dimension of D) to 120 (the dimension of { }, ′D C ) reduces the prediction variance across the grid, most noticeably 
in its upper right quadrant. 
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Table 2. Parameter estimates; negative log likelihoods NLL; model selection criteria AIC, AICc, BIC and KIC; prior 
and posterior model probabilities; and rankings of variogram models based on { } . , ′D C

 
Model  Exp Gau Sph 

Sill Estimate 0.371 0.372 0.373 
std* of Sill 0.214 0.220 0.210 
Integral Scale Estimate 2.409 1.907 2.672 
std* of Integral scale 0.403 0.151 0.311 
NLL -183.86 -175.59 -188.36 
NLL Rank 2 3 1 

( )kp M   1/3  1/3  1/3 
AIC -177.86 -169.59 -182.36 
AIC Rank 2 3 1 

( )k AIC
p M D  9.52% 0.15% 90.33% 

AICc -177.67 -169.40 -182.17 
AICc Rank 2 3 1 

( )k AICc
p M D  9.52% 0.15% 90.33% 

BIC -169.25 -160.99 -173.76 
BIC Rank 2 3 1 

( )k BIC
p M D  9.52% 0.15% 90.33% 

KIC -184.80 -174.87 -188.51 
KIC Rank 2 3 1 

( )k KIC
p M D  13.51% 0.09% 86.39% 

* std represents standard deviation 
 
Since in real applications would not be available, the next step is to compute the statistics of potential data  
conditional on D. As in our case  and  describe the same attribute at different locations, the statistics of  are 
obtained simply upon replacing Δ  in the above procedure with C . We use these statistics to generate 

′C C

200
Δ C C

cR =  

random realizations, , , of C  by considering it to be multivariate normal, CrC 1,2c cr ,KR=

( ) (ov ) DML
⎡ ⎤⎣ ⎦D~ ,DML
E CC C DN

}
|

Cr

C . For every realization  we predict Δ  the same way as before but now 

conditional on an expanded data base { . This yields 

CrC

,D C ( ), C
,D C

r
p ML

D CE Δ  and ( ) ,
, C

D CML

r
p qv Δ Δ D CCo  where 

the subscript ,D CML  denotes ML estimation based on { }C, rD C . The latter are then averaged over all realizations of 

 to obtain CrC ( ) ,D CMLp DE , Δ ( ) ,D CML
v p qΔ ΔCo D  and ( ) ,D CML

Tr Cov⎡ ⎤⎣ ⎦Δ D . The final step entails computing 

( , ) ,D CML
ar E⎡

⎣ C D Δ D CTr V ⎤
⎦  which, we recall, represents ( ) ( ), ,,D C D CML ML

Tr Var Tr E Var⎡ ⎤⎡ ⎤ −⎣ ⎦ ⎣ ⎦C DD Δ D CΔ ; we verify 

that sample estimates of all these three terms stabilize after 200 realizations. Variation of  ( ) ,, D CML
Var  

across the grid is shown in Fig. 4. A comparison of Fig.s 3 and 4 confirms that the estimated variance reduction 
EC D Δ D C

( ) ,, D CML
Var EC D Δ D C  varies in a manner similar to that of the true variance reduction ( ) DML

Var  - Δ D
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( ) ,, D CML
Var ′′Δ D C . Correspondingly  = 54.61 approximates closely the true trace 

reduction 

,| ( | , ) D CC D ML
Tr Var E⎡⎣ Δ D C ⎤⎦

( ) ( ) , ',D D CMLML
Var Tr Var⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦Δ D Δ D C'Tr  = 58.95. 

 
Fig. 3. Variation of ( ) ( ) ,,D D Cp pML ML

Var Var ′
′Δ − ΔD D C  across the grid. 

 
 

Fig. 4. Variation of ( ) ,, D CML
Var EC D Δ D C  across the grid. 
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The above results are based on Monte Carlo evaluation of all moments. Estimating the lead moments of Δ  through 
linearization brings about a ten-fold reduction in central processor time without any serious effect on accuracy.  
 
CONCLUSIONS 
 
Our paper leads to the following major conclusions: 
 

1. A multimodel approach to optimum value-of-information or data-worth analyses has been proposed based 
on a Bayesian model averaging (BMA) framework. We have focused on a maximum likelihood (MLBMA) 
variant of BMA that (a) is compatible with both deterministic and stochastic models, (b) admits but does 
not require prior information about the parameters, (c) is consistent with modern statistical methods of 
hydrologic model calibration, (d) allows approximating lead predictive moments of any model by 
linearization, and (e) updates model posterior probabilities as well as parameter estimates on the basis of 
potential new data both before and after such data become actually available. 

2. The proposed approach should be of help to the DOE in designing the collection of characterization and 
monitoring data at contaminated sites in a cost-effective manner by maximizing their benefit under given 
cost constraints. Benefits would accrue from optimum gain in information, or reduction in predictive 
uncertainty (and risk), upon considering jointly not only traditional sources of uncertainty such as those 
affecting model parameters and the reliability of data but also lack of certainty about the underlying 
models. 

3. Implementation of the proposed approach on a synthetic geostatistical problem in two space dimensions 
demonstrates a need to account for the impact of potential new data on model and parameter uncertainties. 
Though neither existing nor a potentially augmented set of data are sufficient to identify correctly the 
underlying geostatistical model (variogram) and its parameters, they nevertheless yield self-consistent 
results and allow identifying quite accurately the impacts of potential new data on the spatial distribution 
and magnitude of corresponding reductions in predictive variance. 

4. Approximating lead predictive moments associated with each model by linearization has yielded results 
comparable to those obtained via Monte Carlo simulation with a much lesser expenditure of computational 
time and effort. 
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