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ABSTRACT 
A key feature that has an extreme effect on the patterns of contaminant transport in fractured rocks 
is sharply contrasting properties of geological media. Sometimes contrasting media can be treated 
as two interacting subsystems of a high and a low permeability. We study analytically contaminant 
transport throughout a high permeability medium (fracture) with a diffusive barrier due to the 
localization of a contaminant source inside a low-permeability medium (matrix). Transport in the 
fracture is provided by advection and diffusion, whilst transport in the matrix is caused by diffusion 
only. We mainly focus on insulating properties of the diffusive barrier. It is shown that these 
properties are the exponential attenuation of the source power, retardation of the contaminant plume 
size spreading, and modification of the concentration distribution at large distances. Non-classical 
behavior of the contaminant concentration is observed. In particular, four different anomalous 
transport regimes take place, and the change of the regime occurs in both time and space. 
 
INTRODUCTION 
 
One of the major issues of nuclear power engineering is the management of radioactive waste 
management. High-level waste (HLW) is exceedingly dangerous, and its deep geological 
disposal has been internationally adopted as the most effective approach to assure long-term, safe 
disposition. Geological repository systems consist of series of engineered and natural barriers. 
The latter are expected to isolate HLW from the biosphere if engineered barriers fail. So it is 
extremely necessary to provide reliable assessments of insulating properties of geological media 
which are highly heterogeneous. However transport phenomena in non-uniform media have not 
been studied sufficiently enough at the moment. As known, heterogeneity may lead to the 
anomalous behavior of the tracer concentration. It is commonly assumed that if the time 
dependence of the root-mean-square displacement of the tracer particle has a form ( ) ,R t tγ  
with 1 2γ ≠  [1-3], then anomalous diffusion takes place. We have subdiffusion for 1 2γ <  and 
superdiffusion for 1 2γ > . In addition, a crossover between different transport regimes can be 
observed [4,5]. Various approaches have been developed to describe non-classical transport, 
among which are the continuous time random walks (CTRW) [6] and aging CTRW model first 
introduced in the context of diffusion in glasses [7], the renormalization group method [8] 
initially devised within particle physics, and the fractional Fokker-Planck equation (FFPE) [9,10] 
and others. Some of them are purely mathematical and, a lack proper physical interpretation, 
resulting in inconsistencies in the obtained results [11,12]. Therefore, we prefer considering 
simple physical models without any additional assumptions, and so we paid a lot of attention to 
regular heterogeneous sharp contrasting media [13-15,18,19], that can be treated as two 
interacting subsystems of high and low permeability, with the source located inside the high 
permeability region. The simplest realization of such media has been first studied by Dykhne 
[13]; for this reason later it was called the Dykhne’s model. In the present paper we analyze 
contaminant migration in Dykhne’s model with a diffusive barrier due to the localization of the 
contaminant source inside the low-permeability region. Diffusive barriers (for example 
bentonite) are often used in geological repository systems, and many researches are devoted to 
the study of their insulating properties [20-23]. However, these properties may be underestimated 
without taking into account the anomalous behavior of the contaminant concentration arising in 
heterogeneous media. 
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PROBLEM FORMULATION AND BASIC RELATIONS 
 
Consider contaminant transport in a heterogeneous system consisting of two parts (see Fig.1): a 
high-permeability medium I occupying a plane-parallel layer of a thickness  (fracture) and a 
low-permeability medium II, filling the rest of the space (matrix). Transport in the fracture is 
provided by advection with the velocity 

a

ur  and diffusion, whilst transport in the matrix is caused 
by diffusion only. The coordinate  is chosen along the normal to the plane of the fracture and 

the coordinate 

z

x  is along the advection velocity, so that ( )
{ },0,0 / 2

0 / 2

or z a
u z

for a

⎧ <⎪= ⎨
>⎪⎩

r u f

z
. Let 

ρr  be a two-dimensional radius vector { }, ,0x yρ =
r . The diffusivity is 

( )
/ 2

/ 2

D fo

fo

r z a
D z

d r z a

⎧ <⎪= ⎨
>⎪⎩

, . Denote a contaminant concentration distribution by 

.  

D d

( ), ;z tρrc

 
Fig.1 Dykhne’s model geometry configuration 

 
The advection-diffusion equation and boundary conditions have a form 

( ) ( )( ) 0,c u z c div D z c
t
∂

+ ∇ − ∇ =
∂

r   (Eq. 1) 
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z a
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z
ρ

ρ
=± +

=± +

=± −
=± −

∂
= − =

∂

r
r . (Eq. 2) 

 
The contaminant source is assumed to be located inside the matrix at a distance  from the 
fracture and given by the initial condition 

h

( ) ( )0, ;0 2c z N z h a ( )ρ δ δ ρ= − −
r r . (Eq. 3) 

Taking the Fourier transformation of the (Eq. 1) with respect to ρr  and Laplace transform with 
respect to , we get t

2
2

2 0  pk / 2p iuk Dk D c for z a
z

⎛ ⎞∂
+ + − = <⎜ ⎟∂⎝ ⎠

r
rr , (Eq. 4) 

( )
2

2
02 2  pk / 2p dk d c N z h a for z a

z
δ

⎛ ⎞∂
+ − = − − >⎜ ⎟∂⎝ ⎠

r , (Eq. 5) 

where p ,  is the Laplace and two-dimensional Fourier variables, respectively. k
r

Further we call the particles located inside the fracture as active and our aim is to analyze 

their concentration distribution given by . ( ) (
/ 2

/ 2

; ,
a

a

n t dz c z tρ ρ
−

= ∫
r r );
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Integrating (Eq. 4) over , we obtain z

( )2 0pk pkDk iuk p n q+ + + =r r
rr , (Eq. 6) 

here ( )
/ 2

/ 2

z a

z a

pk
pk

c
q D z

z

=

=−

∂
= −

∂
r  is the Fourier-Laplace transform of the flux density. 

To find  we solve pkq r (Eq. 5) with boundary conditions (Eq. 2) 

( ) ( )222
1 0

ht p dk

pk pkq n p dk t N e
− +

= + −r r , (Eq. 7) 

where 2 2
14 ,  4ht h d t a d= = . 

Using (Eq. 6), (Eq. 7), we find the active particles concentration in the Fourier-Laplace space 
( )

( )

22

0

2 2
1

hp dk t

pk

N en
Dk iuk p p dk t

− +

=
+ + + +

r rr . (Eq. 8) 

Consider the problem with the initial condition given by substitution ( ) (2z h a zδ δ− − → )  in 
(Eq. 3) that corresponds to the case where the source is located inside the fracture (this problem 
has been studied in [19]). The active particles concentration per unit area  can be found by 
solving equation 

*
pkn r

(Eq. 1) in the Fourier-Laplace space or using results of the work [19]. So we 
get 

( )
* 0

2 2
1

pk

Nn
Dk iuk p p dk t

=
+ + + +

r rr . (Eq. 9) 

Comparing Eqs. (Eq. 8) and (Eq. 9), and then applying the inverse Fourier-Laplace 
transformation to function (Eq. 8), we obtain the relation 

( )
( )

(*
3

0

, exp
t

h ht tn t dt n t
t tt t

ρ
π

⎛ ⎞′= −⎜ ⎟′−′ ⎝ ⎠−∫
r ),ρ ′r , (Eq. 10) 

with 

( )
( )

( )( )
2

2 2
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02
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2 4

b i pt
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u D
dte dp

i
N e dn t e K Z p b

D dt
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π
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π π

′+ ∞

− ∞

′−
−

′′
′ = >

′∫ ∫ , Re 0ρ′
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r , (Eq. 11) 

where ρ ρ′ =
r′  and  is the MacDonald function (modified Bessel function of the second 

kind) 
0K

( ) ( )12 1 uZ p D u t p p t= + + , (Eq. 12) 

here 24ut D u= .   
Also we analyze two key parameters of the active particles transport such as the variance 

of the concentration distribution 

( ) ( ) ( )2 21R t d n ,t
N t

2ρ ρ ρ= ⋅∫
r , (Eq. 13) 

and the active particles number 
( ) ( )2N t d n ,tρ ρ= ∫

r . (Eq. 14) 
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In the problem under consideration, the variance coincides with the contaminant plume size, 
which is a commonly used concept in the applied research. 
 
MAIN RESULTS 
 
Analysis of the concentration behavior 
First note that for  the function ht t ( )* ,n tρ ′r  changes slightly with increase of , so using t′
(Eq. 10) we obtain 
( ) (*,n t n t ),ρ ρ≅
r r . (Eq. 15) 

As expected the concentration behaves as if the source is located in the fracture but not in the 
matrix. Since in this case the concentration behavior has already been found in [19], we focus on 
the opposite case 

ht t . (Eq. 16) 

The integrand exponent in (Eq. 10) decreases sharply with the increase of . Using a Taylor 
series expansion, we get  

t′

2
hh h t tt t

t t t te e e
′

−− −
′− ≅ . (Eq. 17) 

So the contaminant source can be considered as continuously acting during the time interval 
equal 2

eff ht t t=  and locating inside the fracture but not in the matrix. 
Using (Eq. 10), (Eq. 17), we obtain 

( ) ( )*
3

0

, ,    ht t sth
h

tn t e dt e n t s t t
t

ρ ρ
π

∞
′− −′ ′= ∫

r r 2, = . (Eq. 18) 

Comparing this equation with (Eq. 10), we find 

( )
( )

((
2

2 2
24

0 3,
2 4

ht tu D
h dt

h
t e dn t N e K Z t t
t D dt

ρ ρρ ρρ
π π π

′−− −′
′= ∫

r rrr

r ))0 ρ , (Eq. 19) 

where ( 2
h )Z t t  is given by (Eq. 12). 

For the distances ( )2
hZ t tρ  we can use the approximation of Macdonald function: 

 in the above equation, so the concentration is ( )0 ln ,  1K w w w−

( )
( )( ) ( )
( )( )

2 2
/ 2

0 3 2

ln ,  
,

2 ln 4 ,  

ht t u D h
h

h

hZ t t dt Z t tt e en t N
t D Z t t dt dt

ρ ρ ρ
ρ

π π ρ

− ⎧
⎪≅ ⋅⎨
⎪⎩

rr

r . (Eq. 20) 

For ( 2
h )Z t tρ  another approximation should be used  

( )0 2 ,  1wK w e w wπ− . (Eq. 21) 

For  both the exponential factor and ht t ( )* ,n tρ ′r  of the integrand in (Eq. 10) have narrow 
peaks and the latter one decreases rapidly with increase of ρ . The exponential factor is more 
sharply peaked for ( )2

h hZ t t t tρ  with ( )2
hZ t t  given by (Eq. 12). It follows from 

(Eq. 19) and (Eq. 21) that (Eq. 18) is valid for ( )2
hZ ht t t tρ  only. 
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Now consider the concentration behavior for ( )2
h hZ t t t tρ . According to the results of our 

previous work [19], the function (* ,n tρ )′r  can be represented as follows 

( ) ( )(* , exp ,n t tρ ′ −Φ
r )ρ ′r  (Eq. 22) 

with ( ) ( )( )*, t R t
α

ρ ρΦ =
r r . 

Values of ( )*R t  and α  is defined by the transport regimes obtained in [19]. 

Using (Eq. 22) and substituting t t , and then applying a Taylor series expansion for 
around the point , we obtain 

t′ ′→ −
)( , t tρ ′Φ −

r 0t′ =

( ) ( ) ( )
3

0

,
, exp ,h

h

ttn t t t t t dt
t t

ρ
ρ ρ

π

∞ ∂Φ⎛ ⎞
′ ′⋅ − −Φ −⎜′ ∂⎝ ⎠

∫ ′⎟

r
r r .  (Eq. 23) 

Taking advantage of the saddle-point method, we get 

( ) ( ) ( ),
, exp 2 ,h

t
n t t t

t
ρ

ρ
⎛ ⎞∂Φ
⎜− ⋅ −Φ
⎜ ∂⎝ ⎠

r
r ρ ⎟

⎟
r

2

. (Eq. 24) 

This expression describes the concentration distribution at large distances (termed as 
concentration tails), namely, remote stages of the concentration tails as the first stage of the tails 
is given by (Eq. 19). 
 
Transport regimes 
There are several cases that differ from each other in their relations between the characteristic 
times , where 1,  ,  , u ht t t t ( 2

2 1t t D d= )
2

 also obtained in [19] , so we consider the most 
interesting ones: 1. , 2. . First, note that advection affects the 

contaminant transport for 
1u ht t t 1 ,h ut t t t

u ht t t . The reverse particle flux to the matrix becomes significant 

as 1 ht t t . It is clear that advection influences the contaminant migration transport in the case 
1 and doesn’t influence it in the case 2 since ht t . 

1.  1u ht t t
Depending on the considered time interval, we can use different approximations for ( )Z p  
given by (Eq. 12). 

As shown below, for ( ) ( )2
h h

2
hZ t t Z t t t tρ  expression (Eq. 19) describes the main 

body concentration as well as a first stage of the concentration tail. 

If ( )2
hZ t t dt , then using (Eq. 19), we get the slow classical diffusion 

( )
2 2

, exp
4

hn t
dt

ρρ
⎛ +
−⎜
⎝ ⎠

r ⎞
⎟  (Eq. 25) 

1.1 u ht t t  
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Here we have ( )2 2
h hZ t t D t t≅  , so (Eq. 19) gives 

( )
1 2

0 2

1, exp
2 2

h h

h

Dt tn t N
tDt Dt t

ρρ
ρπ

⎛ ⎞⎛ ⎞
⎜≅ −⎜ ⎟⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠

r ⎟−
⎟

. (Eq. 26) 

 
As follows from this expression, the contaminant plume size is 

( ) 2
hR t Dt t . (Eq. 27) 

    1.2 1u h ht t t t t  

Using the approximation ( ) ( )2 2 1 2h
2

u hZ t t D u t t t≅ + , which is valid for this time interval, 
and (Eq. 19), we get 
 

( ) (2, exp 1 cosh

h u

tn t
t ut t ut

ρ ρ )ρ ϕ
⎛ ⎞
− − − −⎜
⎝ ⎠

r
⎟ . (Eq. 28) 

where ( )cos
u
u
ρ

ϕ
ρ
⋅

=
rr

rr . 

Thus, we have 
( ) 2

hR t ut t . (Eq. 29) 

    1.3 1 ht t t  

Here ( )2
12 1

2
u

h
t 2

hZ t t D u t t t⎛≅ +⎜
⎝ ⎠

⎞
⎟ . It follows from (Eq. 19) that 

( ) (
1

, exp 1 cosh

uh

tn t
t utut t t

ρ ρ )ρ ϕ
⎛ ⎞
− − − −⎜⎜
⎝ ⎠

r
⎟⎟ . (Eq. 30) 

and so the contaminant plume size is 

( ) 1 hR t ut t t ut

2

. (Eq. 31) 

It should be noted that the contaminant plume size can be obtained without solving the transport 
equation (Eq. 1) by means of the effective time concept and the results from [19]. We show this 
by considering the case 2. . In this case advection doesn’t affect the contaminant 
transport, so the contaminant plume size can be expressed through the plume size of the problem 
[19] 

1 ,h ut t t t

( )*R t  as following ( ) ( 2*
h )R t R t t . Recall some results of that work for  1ut t

( )
1

1 1 2

2

4

4

4

*

Dt  , t t

 R t D t t , t t t

dt  , t t

⎧
⎪⎪= ⎨
⎪
⎪⎩
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Substitution 2

ht t  for t  in the above expression gives the plume size of the diffusive barrier 
problem 

( )
2

1

1 1

h h

h h

D t t , t t t
R t

Dt t t  , t t t t

⎧
⎪
⎨
⎪⎩ h

. (Eq. 32) 

Here we have only two regimes since 2 ht t . 

For  advection is significant, so 1ut t th ( ) ( ) ( ){ }2 2* *
h hR t max R t t , X t t , where ( )*X t  

is first moment of the concentration distribution obtained in [19].  
 

Thus, we find the contaminant plume size and concentration distribution for different time 
intervals that determines transport regimes specific for the diffusive barrier problem. All of the 
regimes (Eq. 26), (Eq. 28), (Eq. 30), (Eq. 32) have the retardation factor 1ht t , so for ht t  
the dif ion of fusive barrier results in the exponential attenuation of the source power and retardat
the plume size spreading.  

Note that contaminant particles accumulate around the upper boundary between the matrix and 
the fracture, and the concentration distribution over z  is highly inhomogeneous for 0 ht t t , 

where 2
0 4t a D= . This inequality can be obtained as follows: particles accumulate in a layer 

with a thickness of effz Dtδ  due to the effective source action during the time interval . 

The concentration is not homogeneous over  if 

efft

z z aδ , hence 2
hDt t a  and 0 ht t t . 

For these times only two regimes occurs: ( ) 2
hR t Dt t , ( ) 2

hR t u t t  since 1 0h ht tt t

h

. 

Concentration tails 

Another consequence of the diffusive barrier presence is a modification of concentration tails 
comparing with those found in the problem without barrier [19]. 

Consider concentration tails for the case 1. 1ut t t . Depending on the time interval, the first 

stage of the tail is given by (Eq. 26), (Eq. 28), (Eq. 30). For ( )2
h hZ t t t tρ  the 

corresponding remote stages of the tails, the concentration is determined by (Eq. 24) and also 
varies with the time interval. Further, we obtain the results for one time interval only 1 ht t t , 
because for others the concentration can be found in a similar way. We show that concentration 
tails have a multistage structure: they consist of several parts, for each of them the concentration 
behavior being different. 
If ( )2

h hZ t t t t utρ , then ( ) ( )( ) ( )2 2
1, ,  t R t R t uρ ρΦ = =

r 4 t t , so we get 

( )
2

2 2 2
1 1

, exp
4

htn t
u t t u t t

ρρ ρ
⎛ ⎞
− −⎜⎜
⎝

r
⎟⎟
⎠

. (Eq. 33) 

If utρ , then ( ) ( )( ) ( )2
, ,  4t R t R tρ ρΦ = =
r Dt  and 

( )
2

2, exp
4

htn t
Dt Dt

ρρ ρ
⎛ ⎞
− −⎜⎜
⎝

r
⎟⎟
⎠

. (Eq. 34) 

Thus, for 1 ht t t  the concentration tail consists of three stages defined by (Eq. 30), (Eq. 33), 
(Eq. 34). 
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ctive particle number 

e active particle number 

 

A

( )N t  The time dependence of th is given by (Eq. 14). Using (Eq. 14) 
and (Eq. 19), we find  

( )
2i dp e

0
12

hpt pt

i

N t N
i p p tσ π

+

− ∞

=
+∫ . (Eq. 35) 

σ + ∞ −

For the second denominator term of above expression should be neglected, so the 1t t  

integ ives 

( )
rating g

(N t N erfc t≅ )0 h t . (Eq. 36) 

For the error function can be approximated as ( )
2weerfc w

w π

−

=  ht t  ( ) 22 v

w

erfc w e dv
π

∞
−= ∫  

since 1hw t= t . Thus we have  

( ) 0 ht t

h

NN t e
t tπ

−= . (Eq. 37) 

For the second denominator term is much greater than the first one, so we find 1t t  

( ) 0 ht tN −

1

N t e
t tπ

≅ . (Eq. 38) 

This function is influenced by two factors: action of the effective source and diffusive particles 
flux from the fracture into the matrix. For ht t  the active particles number increases with time
due to the influence of the second factor, th eaches the maximum at 2 ht t

 
en it r =  and decreases 

as ( ) 1 2N t t−∝  because of the first factor. 

CONCLUSIONS 

he contaminant transport through a regularly heterogeneous sharply contrasting medium with a 
 
T
diffusive barrier has been studied analytically. This medium is assumed to be consisting of two 
interacting subsystems of high and low permeability. The diffusive barrier emerges due to the 
localization of the contaminant source in the low-permeability medium (matrix) far away enough 
from the high-permeability region (fracture).  

We have analyzed a concentration distribution of the particles located inside the fracture (active 
particles) for different time and distance intervals. It has been shown that for ht t  the source 
can be considered as acting during the time interval equal 2

eff ht t t=  and locating inside the 
fracture but not in the matrix. Depending on the time interv
transport regimes that are specific for the diffusive barrier problem: 

( ) ( )

al, we have observed one of several 

2~ / ,  ~ 1h hR t ut t R t ut t t , ( ) ~ / e ( )R t  is the hR t t D t , 1 hDt t t , wher contaminant 
plume size. A crossover between different transport regimes is observed.  

n exponential form 
e 

The concentration distribution at large distances (concentration tails) has a
and a multistage structure as in our previous works [15-19]. Thus the change of transport regim
occurs in both time and space. 
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The evolution of the active particle number has been found: ( ) ( )0 hN t N erfc t t= ⋅  for  1t t

and ( ) 0

1

ht tNN t e
t tπ

−=  for . In the latter expression the first factor is provided by the 

diffusive flux from the fracture, while the second is caused by the action of the effective source. 

1t t

We emphasize that all observed transport regimes have a retardation factor of 1ht t  as 
compared with the results of the problem without a diffusive barrier [19]. Also, the active particle 
number has an exponential attenuation factor. Thus, we conclude that the diffusive barrier results 
in:  

1. The renormalization of the source power, namely, exponential attenuation of the power;  

2. The retardation of the plume size spreading; 3. modification of the concentration tails. 

Diffusive barriers are widely used, for example, bentonite is often considered as the best buffer 
and backfill material for deep geological repositories. Assessments of their insulating properties 
should be performed taking account anomalous transport behavior. Non-classical features of the 
contaminant transport may be used to make the repository more effective, in particular, by 
increasing the storage capacity without loss safety. 
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