

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Performance Assessment and LLW Disposal – EPRI Perspective

Lisa Edwards EPRI Program Manager David James DW James Consulting, LLC

WM 2011 February, 2011 Session 101

EPRI LLW Management Program

EPRI LLW Disposal R&D

- Proposed Technical Basis for BTP Modifications
- 10 CFR 61.58 is the NRC Mechanism for Review of Alternative Disposal Criteria
- Work Performed via
 61.58 Leads Directly to Risk-Informing Part 61

 Update of 10 CFR 61
 Provide Technical Basis for Risk Informed Regulations

EPRI Approach for Using 61.58

§ 61.58 Alternative requirements for waste classification and characteristics.

The Commission may, upon request or on its own initiative, authorize other provisions for the classification and characteristics of waste on a specific basis, if, after evaluation, of the specific characteristics of the waste, disposal site, and method of disposal, it finds reasonable assurance of compliance with the performance objectives in subpart *C* of this part. (1)

<u>EPRI Objective:</u> Determine if more appropriate disposal limits could be developed based on 1) radiological risk of the current and projected waste inventory, 2) current ICRP recommendations, and 3) modern disposal practices

Updated Low Level Waste Source Term

Impact from Using Updated Science (More Recent ICRP Recommendations)

Risk Assessment of Key Radionuclides

	Why is it a concern?	Impact on Disposal Site Performance	Regulatory Consideration
Cs-137	Most dominant	 Generally controls classification of LLW in the short term 	 Defines institutional control period
Ni-63	Classification limiting 10 CFR 61	 Impact due to averaging restriction (BTP) on mechanical filters and ion exchange resins 	 Use current ICRP DCFs (limits will increase by factor of 15) Activity should be averaged across disposal cell since activity is contained in a stable waste form
Sr-90	10 CFR 61	 No significant impact on intruder scenarios or long term risk Over-reported generation rate 	• Use current ICRP DCFs should be used (limits will increase by factor of 7)
Nb-94	long half-life, Relative abundance 10 CFR 61	 Subordinate to Co-60 and Cs-137 in leading exposure scenarios Becomes a prominent source of exposure following control periods 	•Disposal limits should assume Nb-94 is dispersed due to disintegration (will no longer be discrete).
Ni-59	Relative abundance 10 CFR 61	 weak emission, never classification limiting Not a significant long term risk 	• Disposal limits should assume Ni-59 is dispersed due to disintegration (will no longer be discrete).

RESEARCH

Risk Assessment of Key Radionuclides: "Phantom Four"

	Why is it a concern?	Impact on Disposal Site Performance	Regulatory Consideration
H-3	Mobility 10 CFR 20	 No significant impact on intruder scenarios or long term risk Min. dose Not a classification determinant 	Potential exist for non-utility tritium rich waste so maintain reporting requirements
C-14	Mobility Long half-life 10 CFR 20	 No significant impact on intruder scenarios or long term risk Over-reported generation rate 	 Actual generation <1% of Class A limits; thus should be considered "insignificant" Consider removing reporting requirement (costly & unnecessary)
Tc-99	Mobility Long half-life 10 CFR 20	 No significant impact on intruder scenarios or long term risk Over-reported generation rate of 100 to 1000 times 	 Actual generation <1% of Class A limits; thus should be considered "insignificant" Consider removing reporting requirement (costly & unnecessary)
I-129	Mobility Long half-life 10 CFR 20	 Low dose contribution to intruder scenario (dose over-estimated by factor of 3 because used whole body instead of organ) Over-reported generation rate of ~1000 times 	 Actual generation <1% of Class A limits; thus should be considered "insignificant" Consider removing reporting requirement (costly & unnecessary)

Site Specific Characteristics- "Natural Barriers"

- Four Regional Areas
- Most Constraining Parameters Used for 10 CFR 61 Basis
- Not Reflective of Characteristics of Any Actual Site

Current Classification Criteria are Marginally Relevant to Today's Disposal Practices

Original Bases for 10 CFR 61

"Kick And Roll" - 2 m Soil Cover

Actual Disposal Designs

Engineered Barriers Not Credited In 10 CFR 61 Protection Analysis

Eastern Site Total Dose Summed Over All Pathways

Western Site Total Dose Summed Over All Pathways

Western Site Total Dose Summed Over All Pathways

Conclusions

- Inventory limits should be evaluated on a more sitespecific basis than was implemented in 10CFR61.
- Site conditions, waste form and disposal facility design interact to achieve the performance objectives.
- A single LLRW disposal site in a dry climate location could be sufficient to accommodate all LLRW generated in the United States for the time period evaluated in this study.

Together...Shaping the Future of Electricity

