Innovative Approaches to Shorten Radiotoxic Period of Wastes Arising from SNF Recycling: Advanced Pyrochemical Processes

> Il Soon HWANG (Seoul National University) Panel#89, Waste Management 2011 Phoenix, AZ, U.S.A. March 3, 2011

Korean nuclear power generation

Korean nuclear power generation

	Site	In Operation	
	Kori	5 (4,137)	
	Wolsong	4 (2,779)	
	Yonggwang	6 (5,900)	
	Ulchin	6 (5,900)	
	Total	21 (18,716)	
 Ulchin #1,2,3,4,5,6 Shin Ulchin #1,2 			
■ Yonggwang	olsong #1,2,3,4 in Wolsong #1	,2	
#1,2,3,4,5,6 • Kori #1, • Shin Ko	2,3,4 ori #1,2,3,4		

Under Const.

4 (4,800)

2 (2,000)

2 (2,800)

8 (9,600)

Total

8 (7,937)

6 (4,779)

6 (5,900)

8 (8,700)

28 (27,316)

Challenge: Spent Nuclear Fuels and HLW

2032

2116

- **Nuclear renaissance faces** international opposition due to Spent Nuclear Fuel (SNF)/HLW Repository
- LILW is widely accepted.

Race for hosting LILW Repository

Collapse of 20 Year Effort

Advanced P&T to Shorten Radiotoxic Period

Prof. H.A. Abderrahim

Advanced Partitioning & Transmutation

Decontamination Factor = Waste from P&T

Key Elements for Decontamination in Advanced P&T

- KHNP's <u>Safety Assessment Code for Facilitating Groundwater</u> Release <u>Evaluation-ROCK</u> Cavern Disposal (SAFE-ROCK[®]).
- Characteristics of SAFE-ROCK[®]
 - 1. Evaluate release of radionuclide to the groundwater in saturated zone.
 - Consider time-dependent sorption coefficient, groundwater infiltration & flow rate for system evolution analysis.
 - 3. Perform deterministic analysis for Near/Far Field.

Key Elements for Decontamination in Advanced P&T

1. Outer Boundary of Engineered Barrier(EBS)

2. Outer Boundary of Natural Barrier (NBS)

Key Elements for Decontamination in Advanced P&T

- All SNF from 24 PWR's 40 years of operation: 26,000 MTHM
- Direct Disposal into Granite Bedrock in Reducing Environment
- Korean Safe-Rock [®] Model vs. UC Berkeley Model (UCB-TTB)
 - Key Migration & Intrusion Dose : U, Pu, Np, Am, Cm, Tc
 - Key Migration Dose Source: I, Cs, Se, Cl, Pd, C
 - Key Heat Source: Cs, Sr

JCB TTB [moliyear]

SNU SAFE-ROCK [mol/year]

DF in Aqueous Process: ACSEPT

DF>1,000 demonstrated for TRU's in continuous processes (2010)
 Partitioning : concepts and results

Advacnced Pyrochemical Process

• DF= $260 \sim 1,000$ for TRU in batch processes (1999)

Advanced Pyrochemical Process

DOVITA fuel cycle

Advanced Pyrochemical Process

Advanced Pyroprocess : Experimental Data on DF*

• Recovery Yield (RY) after Five-stage Con-current Extraction (CRIEPI)

*Kinoshita et al., CRIEPI (1999)

Advanced Pyrochemical Process

• DF=10⁴ in Zr Hull electrorefining

- From Toshiba's research in 2008

The Results of Hull Electrorefining Tests

LILW-GD (or Intermediate Level Waste)

> Advances in Partitioning Technology meet the need for LILW-GD (ILW)

Element	DF-lowerbound for Advanced P&T Assessment	DF achieved by Advanced Aqueous Partitioning (continuous column)	DF achieved by Advanced Pyrochemical Partitioning (batch)
U	1,000	10,000	14,300
Np	1,000	1,000	1,429
Pu	1,000	1,000	1,667
Am	200	1,000	264
Cm	200	1,000	N.A.
Ι	50		100
Tc	50	1,350	50
Cs	10	10	10
Sr	10	10	10

Geological Disposal with Advanced P&T

Disposal Depth	Human Intrusion	Leaching & Migration	
Near Surface Disposal	Dose for intrusion Ex) 100 mRem/yr →nuclide concentration Eg.) 4,000 Bq/g	Biosphere radiation dose limit Ex) 10 mRem/yr	(.
Deep Geological Repository	The amount of nuclear waste that can be excavated is drastically reduced and its dose rate is low even when the concentration is significantly raised.	10 mRem/yr → Low migration dose rate due to nuclide diffusion and dilution in deep geological repository.	Dolosto Shales Limesto

Canadian RWMO Approach for LILW Decommission Wastes)

Standards: IAEA Waste Classification (2009)

LILW-SD vs. LILW-GD

LILW-SD Site: Near Surface Disposal (Predicted for the First Stage of Wolsung Site in Gyongju, Korea) LILW-GD: Advanced P&T Wastes for SNF form 40 years of 24 PWR operation in Geological Disposal in Korean Granite Bedrock

*Reference: Joo Wan Park et al., A Safety Assessment for the Wolsong LILW Disposal Center: As a part of safety case for the first stage disposal, Journal of the Korean Radioactive Waste Society, Vol. 6(4), P. 329-346, 2008.

Human Intrusion Scenario: YMP & KBS-3

are shown in Figure 12-7.

19

Human Intrusion Scenario & Advanced P&T

➤ US Rule (10 CFR 63.321)

(1) 0.15 mSv (15 mrem) for 10,000 years following disposal;

(2) 1.0 mSv (100 mrem) after 10,000 years, but within the period of geologic stability (~1,000,000 year).

- Korean Wolsung LILW-SD Site Assessment <1 mSv/yr</p>
- > Advanced P&T has very large safety margin against intrusion.

Summary : Advanced Partitioning & Transmutation

 Safety of LILW-GD with Advanced P&T can be equivalent to that of LILW-SD, both in Migration Dose and Intrusion Dose.

- LILW-GD with Advanced P&T can greatly reduce waste volume.
- In the long-run, isotopic partitioning & transmutation may lead to LILW-SD

Summary : Advanced Partitioning & Transmutation

• LILW-GD (or Intermediate Level Waste) vs. HLW

	SNF	HLW	LILW-GD (ILW)	LILW-SD (LLW)
Radiotoxic Period (yr)	~300,000	~5,000	300	300
Heat	Very High	High	Low	Very Low
Prediction Confidence	Low	Low	High	High
Safety Assessment Period (yr)	1,000,000	1,000,000	10,000	10,000
PR-PP	Very Low	Low	High	Very High
Waste Volume	1	~0.25	<1	>>1 (without isotopic partitioning)

Needs for Global Standards on LILW-GD (ILW)

UK Guidelines

- ILW is radioactive waste with radioactivity levels exceeding the upper boundaries for Low Level Waste (LLW):
 - Alpha emitters greater than 4 GBq/tonne. (4,000 Bq/g)
 - Beta/gamma emitters greater than 12 GBq/tonne.
 - Waste that does not need radiological self-heating to be taken into account in the design of storage or disposal facilities.

ILW arises from:

- Reactor operation
- Decommissioning
- Spent fuel reprocessing
- Research facilities
- Historic ILW in legacy storage

Needs for Global Standards on LILW-GD (ILW)

- International Task Force
 - State-of-the-art Review of Advanced P&T
 - Waste Classification for LLW Class A,B, C & GTCC (US)
 - LILW(ILW) Specification (IAEA, UK, US)
 - LILW-GD (ILW) Cost-Benefit Assessment
- IAEA Safety Guide
 - SNF Management Planning Guidelines
- Proliferation Resistance Physical Protection
 Multinational Approach