

# Monitoring and Modeling of the Chernobyl Cooling Pond as a Case Study

## **Projects supported by:**

- DOE EM-32 Office of Soil and Groundwater Remediation DOE EM Points of Contact:
  - Kurt Gerdes, DOE EM-32, Director, <u>Kurt.Gerdes@em.doe.gov</u>
  - Skip Chamberlain, DOE EM-32, Grover.Chamberlain@em.doe.gov
  - Ana Han, DOE EM-30, <u>ana.han@em.doe.gov</u>
  - Mark Williamson, DOE EM-32 ASCEM Lead Mark.Williamson@em.doe.gov
- IAEA Waste Technology Section, Division of Nuclear Fuel Cycle and Waste Management, POC- Horst Monken-Fernandes <u>H.Monken-Fernandes@iaea.org</u>

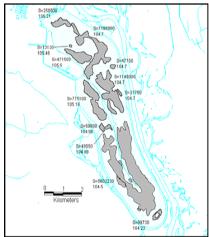
# **Chernobyl Cooling Pond**

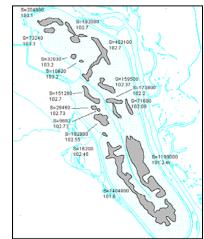


- Area ~ 22 km<sup>2</sup> , ~1.5  $\times$  10<sup>8</sup> m<sup>3</sup> of water
- Water is pumped from the Pripyat River to the Cooling Pond

### Monitoring

- 40 cross sections and aerosol sampling stations;
- 138 groundwater monitoring wells;
- 4 stations for sampling surface water and bottom sediments


### **Sources of Contamination**


- Dispersed fuel particles, and "hot" particles
- Heavily contaminated water from the reactor basement and soils.
- Total radioactivity >200 TBq, including <sup>137</sup>Cs-80%, <sup>90</sup>Sr-10%, <sup>239,240, 241</sup>Pu-10%
- Routine releases of contaminated water

### **Decommissioning**:

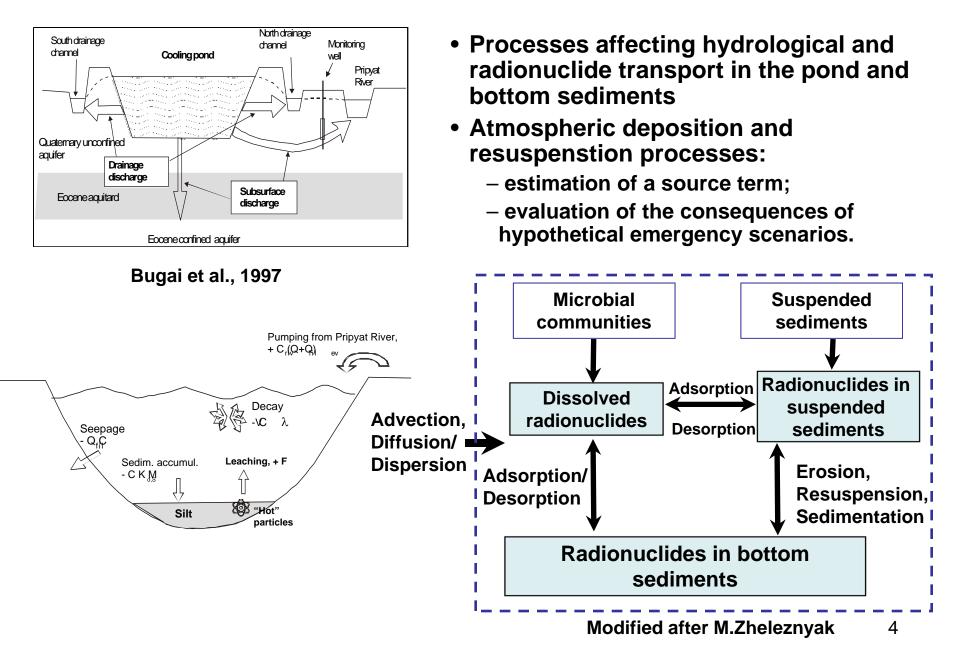
Will expose highly contaminated bottom sediments:

Normal climate - 58% Dry climate - 80 %

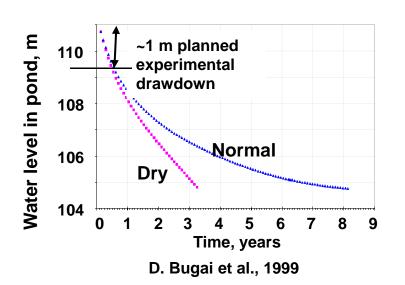


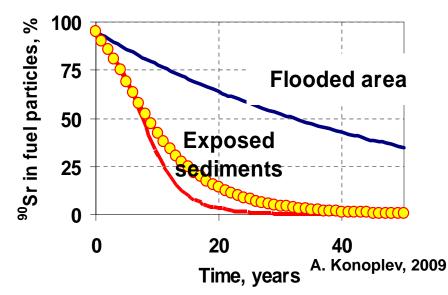


# **Monitoring Systems**


#### Monitoring atmospheric deposition

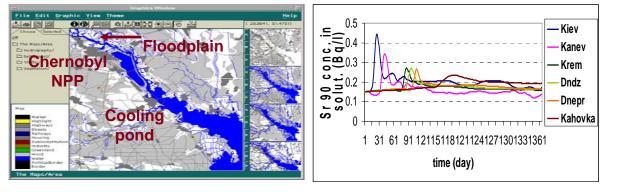
- Post-accident monitoring of aerosol distribution along with modeling studies
- Resuspension of radionuclides
- Monitoring contamination of surface water and bottom sediments
  - Monitoring of contamination of surface water and bottom sediments since mid-1986.
  - Research sites
- Monitoring saturated and unsaturated zone
  - Post-accident network of groundwater wells, surface water sampling stations
  - Unsaturated (vadose) zone research sites.


- Specific monitoring data and analyses used to test the conceptual models
  - Surface water and groundwater monitoring,
  - tracer and pumping tests,
  - radiochemical, geochemical, meteorological measurements,
  - pilot cooling pond drawdown,
  - resuspension monitoring,
  - monthly sampling and radioactive analysis of water from the input and output canals,
  - radio-ecological studies.


New monitoring methods and tools to monitor pond decommissioning and remediation are needed.

## **Testing Conceptual Site Models**




### Modeling of Water Level Drawdown, Radionuclide Behavior, and Vulnerabilities of Environmental Resources





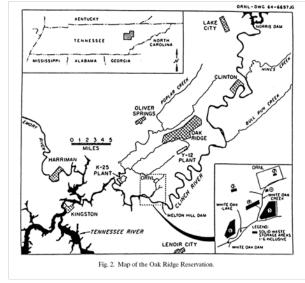
Modeling of the dam break (left) and <sup>90</sup>Sr concentration (right) in the Dnieper River reservoirs

Modeling of additional <sup>137</sup>Cs contamination of soil due to sediment resuspension after a hypothetical fire



M. Zheleznyak et al., 2006

V. Kashparov, et al. 2001


## Potential Use of Chernobyl Cooling Pond as a Case Study for Testing Monitoring, Modeling and Remediation Techniques

#### Savannah River PAR Pond



- Constructed in 1958 as a Cooling Pond for the Savannah River Site's P and R Reactors
- Experimental water-level drawdown in 1991 and monitored radionuclide concentrations in water and bottom sediments.

#### Oak Ridge Reservation White Oak Lake



#### **Testing of Remotely Operated Field Monitoring Techniques:**

- Savannah River ADCON Telemetry-a real-time soil moisture monitoring system.
- FDTAS-tritium analysis system in surface and groundwater in near real time.
- Sol-Gel Indicators for Process and Environmental Measurements
- INL Soil and Surface Assay Systems for Gamma, Beta, and Alpha Radiation Sources