Panel: Nuclear Renaissance - New Nuclear Plants Hot Topics

Decommissioning Considerations in Plant Design

Dr. Jas S. Devgun Manager Nuclear Power Technologies Sargent & Lundy LLC Chicago, IL U.S.A

Note: The views expressed here are those of the author and do not necessarily reflect the views of his employer or the clients.

March 2, 2011 Phoenix, AZ

Design Features Relevant to Decommissioning

- I. Reduction in System Components
- II. Reduction in Construction Materials
- III. Modular Designs of Systems
- IV. Modular Design of Structures
- V. Advanced Construction techniques
- VI. Better Designs to Avoid Contamination During Operational Phase
- VII. Waste Minimization
- VIII. Harmonization of International Codes and Standards for Design

Reduction in Components & Construction Materials

Reduction in Components for New Reactor Designs

AP1000	ESBWR	US EPR
Design life - 60 years	Design life - 60 years	Design life - 60 years
18 month refuel cycle	24 month refuel cycle	12 to 24 month refuel cycle
 Reduction in components 87% less control cable 80% less piping 50% fewer valves 35% fewer pumps 	 Reduction in components 11 systems eliminated 25% of pumps, valves and motors eliminated 	 Reduction in components 44% fewer heat exchangers 50% fewer tanks 47% fewer valves 16% fewer pumps

Reduction in Components

AP1000

Compared with a conventional 1000 MW PWR

Source: Westinghouse

Reduction in Construction Materials

Era	Concrete	Rebar
1970s	<u>m³/MWe installed</u> 190+	t (metric)/MWe installed 40+
Current Designs	90	40
<u>Comparisons</u> Sizewell B (UK) US typical ABWR AP1000	Total Concrete_m³ 520,000 300,000 351,000 <100,000	Total Steel t (metric) 65,000 46,000 <12,000

Modular Designs –Systems and Structures

AP-1000 Modular Systems – Approx. 200 System modules

Q6-01 Module – RCS Stages 1,2,3 ADS 12' x 12' x 15'-9", 50 t

R161-Aux Bldg Piping Module 41'-3" x 6' x 10'-11", 4 $\frac{1}{2}$ t

Q223 Module – Direct Vessel Injection B Valve Module, 28' x 37'-3" x 10'-9", 15 t

ABWR Design Modularization

14 Critical Path area Modules

37 Sub Critical Path area modules130 Other area modules

Source:

AP-1000 Modular Structures

Approx 150 structural modules

CA20 21 mX14 mX21 m, 875 t

CA01 25mx29mx26m 750t

Modular Designs – Structures

Super Large Scale Upper Drywell Module Kashiwazaki-Kariwa

Main Control Room Module - Hitachi

Composite module of piping, valves and structural steel (Toshiba) JD/Panel

CANDU Design

Modular Construction

Modular Construction Pros & Cons

Pros

- Reduction in schedule
 - parallel construction
- Reduction in manpower needs
- Reduction of work congestion
- Uniformity in systems and structures
- multiple units at the same site
- Uniformity in design
- Better quality control
- Reduction in facility footprint
- Reduction in system components
- Mass production capability
- Significant cost savings

Challenges

- More detailed engineering at early stages
- Infrastructure
- Larger modules as multiple submodules
- Early procurement of materials
- Transportation logistics & cost
- Very Heavy Lift capability
- first-of a- kind engineering activity
- temporary weather covers
- regulatory codes and standards
- Module connections

Advanced Construction Techniques & Better Designs

- Modularization
- Slip Forming
- Open Top Construction

Advanced Construction Techniques

Shimane-3

A Quick Photographic Journey

Lingao-4

VHL in action-Qinshan

JD/Panel

Advanced Construction Techniques

Automatic Welding Machine -Shin-Kori

3D CADD - Courtesy Mitsubishi

Slip forming – CANDU 6

JD/Panel

Waste Comparison

Waste Volume*	Operational Wastes (Dry and Wet)	Decommissioning Waste (Low Level)
Current PWR 1000 MWe	270 m ³ /y (9540 ft ³ /y)	18,340 m ³ (647,500 ft ³)
AP1000	163 m ³ /y (5760 ft ³ /y)	App. 10,000 m ³ (353,000 ft ³)

Comparison: Decommissioning waste (low level) from Main Yankee: 19,800 m3 (700,000 ft3); Double that amount with concrete. 240 Million lbs

Main Yankee: 860MWe PWR; D&D Cost \$550 Million

International Codes and Standards for Design

- Greater harmonization of national standards facilitates more uniform regulatory design review and licensing process worldwide
- Current reactor plant designs are developed by international companies who plan to build these units in many different countries
 - In many cases a plant built in one country becomes a reference plant for construction of that design in other countries
- Major components (such as the RPV and the SG) fabrication capability - only a few manufacturers
- Economies of scale through modular system fabrication modular construction
- Activities in this regard:
 - ASME –worldwide application
 - IAEA
 - WENRA

Why is this Important

Cost Savings, Better Quality, Better Safety

Capital Cost Estimates

Estimate Year	Capital Cost per kWe installed	Reference Plant Cost 1100 MWe
2000-2002	\$1,200 to \$1,500	\$2 billion to \$4 billion
2006-2007	\$3,600 to \$4,000	\$4 billion to \$4.5 billion
2008	\$5,500 to \$8,100	\$6 billion to \$9 billion

Discussion: Questions to Consider

- Nuclear renaissance its success (at least in US) may depend on it public acceptance – addressing waste management and decommissioning issues
- D&D 60 plus years away why should we still consider it
- D&D features part of new designs how far to optimize
- Would new technologies (in next decades) make our features obsolete or redundant
- Nuclear renaissance cost economics
 - refurbish or rebuild