

Depleted uranium: Hearing a different drummer

Jean-François GERVAIS AREVA Front End Business Group Vice-President Business Optimization

Waste Management Conference – March 2011 – Phoenix, AZ

What are we talking about ?

Depleted uranium inventory (outside of USA)

Country	Quantity of Depleted Uranium (tU)
Russia	680 000 - 700 000
France	260 000
Germany	
UK	80 000 - 85 000
Netherlands	

Physical form of intermediary storage

- France developed a defluorination process in the 1980s and, since then, is converting on line its depleted UF₆ into U₃O₈
- Meanwhile, other countries were storing their depleted UF₆
- Lately, all of them moved to more stable forms of storage
 - 🔶 Russia
 - Conversion to UF₄ at Angarsk (project Cedar)
 - Conversion to U₃O₈ at Zhelenogorsk (using AREVA's technology)
 - UK: Conversion to U_3O_8 (project in progress using AREVA's technology)

Germany and Netherlands: conversion to U₃O₈ sub-contracted to AREVA

Focus on the French situation **Technical status**

- Depleted UF₆ coming from EURODIF is de-fluorinated into U_3O_8 in the W facility at Pierrelatte
- AREVA U₃O₈ is conditioned in containers of 10 MT capacity and stored on two sites in France.
- Containers are piled up, either in dedicated depleted uranium storage facilities or as radiation shielding in reprocessed uranium storage facilities.

Depleted uranium: legal status

- In all european countries and in Russia, depleted uranium is not considered as a waste as long as there are possibilities for reuse
- In general, it is the responsability of the industrial owner of depleted uranium to decide if a resource or a waste
- The French « Environmental Code » says, in the article L542-1-1 [...]
 - A radioactive **material** is a radioactive substance for which further use is forecast or contemplated, after treatment if need be.

[...]

Radioactive **WaSte** is a radioactive substance for which no further use is forecast or contemplated.

[...]

Utilization of depleted uranium

Current utilization

Radiological shielding in RepU storage facilities

MOX fuel fabrication for LWR

• more than 100 tU per year

Present and mid-term utilization

- Re-enrichment of tails
 - Recent program based on gaseous diffusion enrichment technology : READ

Long term utilization

Fast neutrons reactor fuel

Re-enrichment of depleted uranium AREVA experience – The READ Campaign

- Campaign launched in 2008 with objective to re-enrich 15,000 tU of depleted uranium into LEU
- Technical success
- Campaign stopped early 2009 at 7,800 tU because of dropping price of natural Uranium

Re-enrichment of depleted uranium Lessons learned

Conditions for future re-enrichment

- Sustainable price for natural uranium: the trend seems right
- availability of enrichment capacity
- ability to lower the secondary tails assay will increase the share of depleted U eligible for re-enrichment
- having the richest tails under the right form
 - re-conversion from U_3O_8 to UF₆ represents a significant part of the re-enrichment cost

66 Richest tails should be kept as UF6

Fuel for fast neutrons reactors

Worldwide renewed interest for fast neutrons reactors

- Prototype Fast Breeder Reactor (PFBR) in India
- 🔶 BN800 in Russia
- ASTRID in France
- PRISM in the USA...
- and work ongoing in Japan

A strategic inventory

 Today's French inventory of depleted uranium can feed for more than 300 years the FBR componant of its future nuclear fleet (assumed to be 20%)

Present intermediate storage options are acceptable for such an horizon

Conclusion (1/3)

In the past decades, most countries considered depleted uranium as a valuable resource for the next generation of reactors, at a distant horizon requiring several decades of intermediate storage

Status of depleted uranium and storage policies have been defined accordingly

Conclusion (2/3)

AREV

But the world is changing

Depleted Uranium: hearing a different drummer - J-F. Gervais AREVA. - March 1, 2011 - p.11

Annual Uranium production

Conclusion (3/3)

- The nuclear renaissance triggered a durable increase of price of uranium, and even some concerns about its future availability
- Lowering of tails assays in new enrichment facilities will increase the spectrum of historical depleted uranium eligible for re-enrichment
- This evolution has changed the horizon for re-utilization of depleted uranium

Status and storage policies should be revisited accordingly 99

Thank you for your attention

Waste Management Conference – March 2011 - Phoenix

