

The Savannah River National Laboratory

Dr. Terry A. Michalske, Director

Evolution of SRNL

Savannah River Laboratory - established 1951

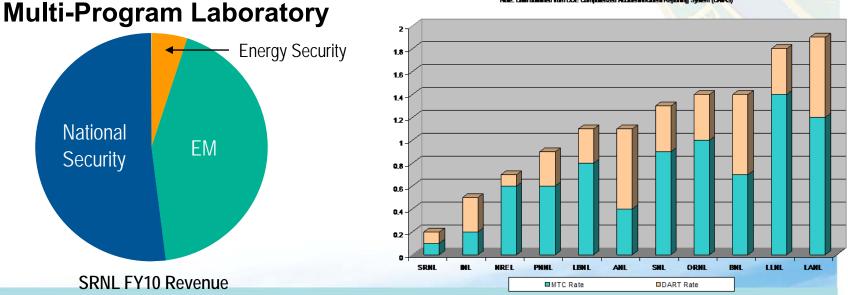
R&D to support the Savannah River Plant's mission of producing nuclear materials for the national defense

Savannah River Technology Center - 1992

Continued support to Savannah River Site (SRS)

Diversified technological focus

Savannah River National Laboratory - 2004


Expanded role for DOE/EM and broader national security missions

SRNL at a Glance

- 945 Staff; ~ \$210M (FY10)
- Safest Laboratory
- Broad Science and Engineering
 - Nuclear Materials Detection, Handling and Processing
 - Light Elements

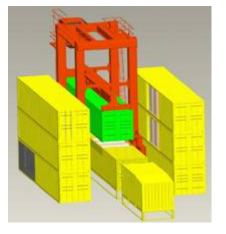
National Laboratory Injury & Illness Data Per 200,000 Hours Worked, CY 09 Note Data utilized from DDE Computational Academ/Instand Reporting System (CARIS)

Our Facilities

Aiken County's Savannah River Research Campus Hydrogen Technology Research Laboratory

Our Greatest Strength: Our People

Internationally recognized • Professional leadership • Building the next generation



Multi-Program National Laboratory

Environmental Management

- Waste Treatment
- Materials Stabilization and Disposition
- Remediation and Cleanup
- Assessments and Verification

National and Homeland Security

- Nuclear Defense
- Plutonium Technology
- Homeland Security
- Nonproliferation
- Nuclear Forensics

Energy Security

- Hydrogen Production and Storage
- Nuclear Fuel Cycle R&D
- Renewable Energy Research

SRNL Innovation Impacts Broad National Priorities

Environmental Management

Small Column Ion Exchange module

Rotary Microfilter

National and Homeland Security

FBI Forensics

Tracking and tagging technology

Energy Security

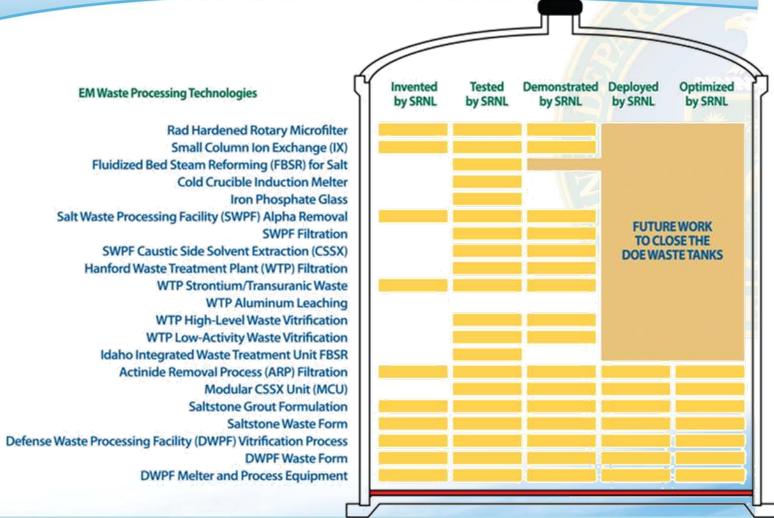
Porous wall hollow glass microspheres

Testing SODAR to measure off-shore wind

Broad Science and Engineering Proficiencies

 Integrated chemical process development

- Laboratory, bench, and pilot scale
- Strong analytical chemistry capability
- Materials development and analysis
 - Metallurgy, ceramics, and polymers
 - Synthesis and performance
- Process and engineering modeling
- Radioactive process development and plant support
- Nuclear engineering
- Mechanical engineering, remote systems, and robotics
- Environmental science
- Biotechnology
- Atmospheric sciences

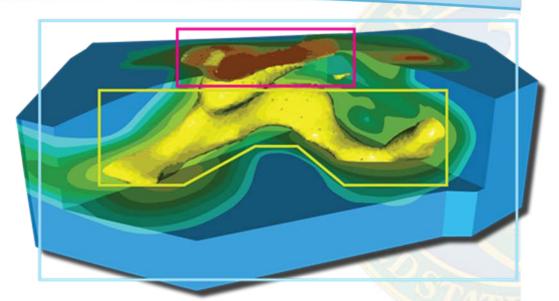


Presen

1

989

SRNL Innovation: EM Waste Processing Technologies



SRNL Innovation: EM Groundwater and Soil Technologies

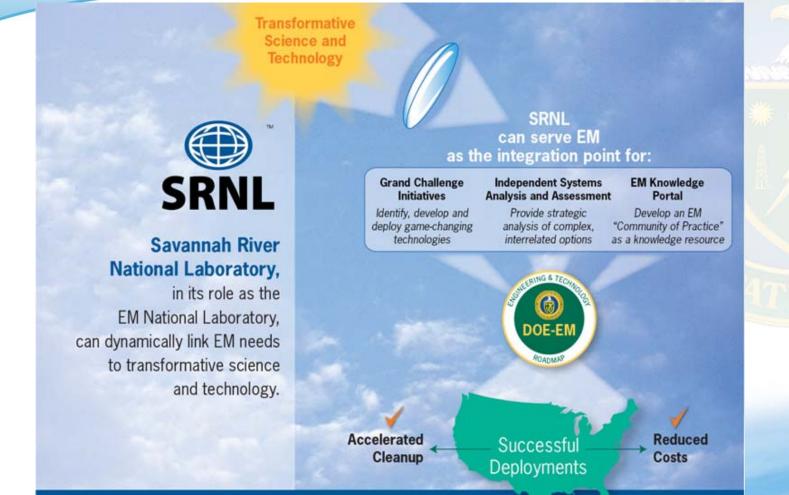
Groundwater & Soil Cleanup Solutions

for every contaminant zone matched to the cleanup challenge applied across all remedial investigation phases (characterization, remediation and monitoring)

SOURCE ZONE Raman Spectroscopy^{2,3} Geo VIS^{2,3} Cone Permeameter ^{1,2,3} Laser Induced Flourescence^{2,3} Hydrophohic Flexible Membrane (FLUTe)^{2,3} Ribbon NAPL Sampler ^{1,2,3} Wireline Soil Sampler^{2,3} Membrane Interface Probe (MIP)^{2,3} In-Situ Chemical Oxidation^{2,3} Six Phase Heating (ERH)^{2,3} Thermal Detritiation^{2,3} Electrical Resistance Tomography (ERT)^{2,3}

PRIMARY GROUNDWATER / VADOSE ZONE -

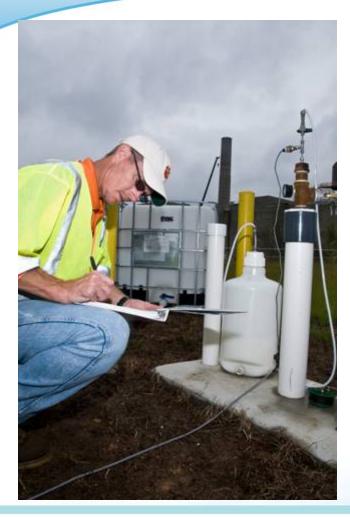
Cone Sipper ^{1,2,3} VOC Headspace Sampling ^{1,2,3} Strata Sampler ^{1,2,3} CPT Nal Gamma Probe ^{2,3} GeoSiphon ^{1,2,3} PHoSTer (bio) ^{1,2,3} Sulfate Reduction of Metals ^{2,3} Base Injection ^{2,3} Hydraulic Fracturing Enhanced SVE^{2,3} Edible Oil Injection ^{1,2,3} I-129 Capture with AgCl ^{1,2} Micro CED (Bio) ^{1,2} Horizontal Wells ^{2,3}


DILUTE PLUME / FRINGE BaroBall^{1,2,3} Microblower^{1,2,3} Monitored Natural Attenuation (MNA)^{1,2,3} Enhanced Attenuation (EA)^{1,2,3}

Technology Key

Coding ¹ - Invented by SRNL ² - Tested/Demo by SRNL ³ - Deployed/Optimized by SRNL

Moving to Strategic Role for EM Program


Rotary Microfilter

- SRS: Remove solids from salt waste
- Hanford: Currently studying for applications
- Advantages over cross-flow filter
 - Smaller footprint
 - Can be deployed in-tank
 - Higher filtration rate
- Adapted Spintek design for radioactive use
- Patented and licensed
- Funded by EM Office of Technology Innovation and Development

MicroCED

- SRS: Demonstration in P Area
- Naturally occurring microbes
- Destroy chlorinated volatile organic contaminants
- Less expensive, less energy-intensive
- Patented microbial consortium
 - Another SRNL microbial consortium for petroleum products
- Demo funded by ARRA


Unique Grout Formulations

- SRS: In-situ D&D of reactor vessels
- Precedent-setting approach to D&D
- Chemically compatible with subject materials
- Flowable and self-leveling
- Funded by ARRA
- Building on this work, developing grout for high-level waste tank closure
 - Funded by Site's liquid waste contractor, Savannah River Remediation

Vacuum Salt Distillation

- SRS: HB-Line processing of 3013 plutonium oxide
- Removes salts to prevent equipment corrosion
- Uses combination of vacuum, heat, reduced pressure, and cooling air
- Safe, robust and gloveboxfriendly
- Avoids TRU waste generation and criticality concerns of washer approaches
- Co-developed with Site and UK's AWE

Nuclear Materials are Key to Our Nation's Future

Energy

- Advanced Reactors
- Fuel Designs
- Fuel Reuse
- Regulatory Approval

Nuclear Materials

- Processing
- Disposition and Storage
- Tracking & Control

Environment

- CO2 Reduction
- Waste Management
- Fuel Reuse

National Security

- Nonproliferation
- Nuclear Deterrence
- Materials Control

SRS Clean Energy Initiative

Needs

- Reduce CO₂ footprint
- Provide secure energy for critical missions
- Assets
 - Large available land area
 - Nuclear materials expertise
 - Highly trained and skilled workforce
- Goal: Build industry partnership and advance clean energy technology
 - Biomass
 - Grid integration
 - Small Modular Reactors (SMR)

