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ABSTRACT

The results of the calculation of permeability and dispersion coefficients obtained by the 
application of the method of homogenization for the transport of solute in an unsaturated porous 
medium with microscale fracture geometries are discussed. Due to sharp contrast in the 
viscosities of the liquid and gas phases the fluid flow takes place dominantly in the gas region. 
For single fracture geometries the permeability appears to be the smaller for distorted channel 
geometries than the straight channel geometry due to tortuosity. For multiple fractures the 
orientation of fractures strongly influences the permeability. The longitudinal dispersion, similar 
to permeability, decreases with distortion of the fracture. For multiple fracture the dispersion 
tensor has been calculated for two parallel straight inclined channels and various dispersion 
coefficients  appear to be non-zero due to the fracture orientation characteristics. 

INTRODUCTION

Fractures in a rock medium very often appear to be partially saturated and both the liquid(water) 
and gas(air) phases are present. Fluid flow in such fractures is driven by a pressure gradient over 
the macroscale. Since the viscosity of the air is much smaller than that of water, the air flows 
much more easily than the water. As a result, the solute released in a partially saturated medium 
will migrate dominantly with air flow.

Released solute matter experiences both molecular diffusion and hydrodynamic dispersion in the 
fractures of the rock medium. The non-uniform fluid velocity distribution causes enhanced 
spreading of solute matter by Taylor dispersion mechanism. 

From the viewpoint of effective management of the underground repository located in an 
unsaturated rock medium it is important to evaluate the characteristics of solute transport which 
accompanies dispersion. In this study, the process of solute transport over the macroscale is 
briefly discussed in the framework of homogenization theory. Two basic assumptions are made: 
the heterogeneous medium structure on the microscale is periodic with periodic length l and all 
the variables and material properties are also periodic over the same length. The perodicity 
assumptions are not very restrictive because the distributions and arrangements over the periodic 
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length are quite arbitrary. A few boundary value problems are defined in a unit cell with side 
lengths equal to the period along each direction on the microscale. 

The boundary value problems are solved numerically by using finite element method. The 
fracture domains are discretized into triangular elements. Variational principles corresponding to 
the microcell boundary value problems are minimized to solve for the nodal unknowns.

Several two-dimensional sample microcell geometries of fracture are chosen. For a single 
fracture in the unit cell a straight channel, a V-shaped channel and a S-shaped channel are chosen. 
For multi-fractured medium structure a unit cell with two inclined parallel straight channels 
inclined at 45deg from the horizontal is first considered. The parallel fractures are then 
connected by another straight channel. The microcell boundary value problems are then solved to 
determine the permeability which is required in Darcy's law and the dispersion coefficients that 
are required for the transport of solute matter over the macroscale.

The permeability and the dispersion coefficients are calculated for the chosen microcell 
geometries. For single fracture geometries the permeabilities Kxx (the rate of fluid movement 
through the medium in the x-direction due to the overall macroscale pressure gradient imposed in 
the x-direction) are calculated. It is smaller for V-shaped and S-shaped channel geometries due 
to distortion of the flow path as compared with straight channel case. For multiple channel 
geometries the permeability tensor has non-zero values for the off-diagonal entries Kyx and Kxy. 

The dispersion coefficients Dij (dispersion coefficients in i-direction due to macroscale 
concentration gradient in j-direction) are calculated for various fracture geometries all under the 
condition of macroscale pressure gradient in the x-direction. For single fractures the dispersion 
coefficients Dxx only is considered because spreading in y-direction is blocked by the rock phase 
allowed and the transverse dispersion becomes zero. For multiple fracture the result of dispersion 
coefficient calculation is shown only for two fracture medium. Dxx is larger than others. All of 
the dispersion coefficients show sharp increase with Peclet numbers larger than 30. 

THE GOVERNING RELATIONS ON THE MICROSCALE

The porous medium is assumed to be composed of the matrix(m) of solid rock phase, the liquid 
phase(l), and the gas phase(g). It is further assumed that the liquid region exists between the rock 
matrix and the gas domain, and separates the two domains. Each phase is assumed to be connected 
throughout the porous medium. Driven by macroscopically imposed pressure gradient the fluid flow takes 
place dominantly in the gas region and also in the liquid region.

The basic governing equations on the microscale are summarized as follows. In ƒ the fluid flow is 
governed by the conservation laws of mass and momentum and the transport of solute is governed by the 
masss conservation:
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where u, pl and cl are the fluid velocity, the pressure and the solute concentration in the liquid, and l and 
l are the density and absolute viscosity of the liquid. Also Dl is the diffusivity of the solute in the liquid. 

In g,

in which v is the fluid velocity in the gas region and other quantities with subscript symbol ‘g’ are defined 
in the same manner as in the liquid.  
Although the decay effect in both phases should be accounted, it is relatively weak over the time scale of 
transport in the gas region and has been omitted.

On the boundary  between the solid and liquid, the liquid velocity vanishes and the solute flux should 
vanish:

On the interface lg between the liquid and gas, continuity of the fluid velocity, mass fulx, and Henry's 
law dictate that

where H is Henry's law constant.

The process of deriving the macroscale governing equations is briefly summarized([1]). Two basic 
assumptions are introduced in the method of homogenization. First there exists a scale disparity so that 
there are two vastly different length scales: the microscale l and the macroscale l'. Second all the variables 
and material properties including the medium structure are l-periodic.

Normalization

Let l and l' be the length scales on the microscale and macroscale. They are related by

Also let P' and C0 be the pressure drop over the macroscale and the reference concentration. The 
following normalization is introduced:
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There are several time scales: the convection time scales in the liquid and gas phases and the diffusion  
time scales in the liquid and gas phases which are estimated as

The diffusion time scale in the liquid is the largest one. Since the primary goal of this study is the 
transient process of solute transport in the gas domain, it is discarded. The order relations among other 
time scales are as follows:

The governing conditions in the dimensionless variables are omitted.

Dimensionless Parameters

The orders of magnitude of some representative dimensionless parameters are assumed as follows:

In the above, l and g are the kinematic viscosities if the liquid and gas.

MULTIPLE SCALE ANALYSIS AND THE GOVERNING EQUATIONS ON THE 
MACROSCALE

The fast and slow coordinates are introduced for both spatial coordinates and time and the derivatives are 
expanded accordingly:

The dependent variables are expanded in perturbation series:

At successive orders of , the following results are obtained.
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(i)For fluid flow the velocity in the gas region is much larger than that in the liquid region and at leading 
order the gas phase behaves like an imcpmpressible fluid:

If the gas velocity at leading order and the first order correction of the gas pressure are expressed as

where the dimensionless quantity

signifies the buoyancy effect.

The functions K and S must satisfy

where a pair of brackets is used to denote the microcell( ) average defined as

It should be noted that the average is over the entire microcell, not over the gas domain only.

Darcy's law then becomes

which serves as the momentum equation for the gas flow on the macroscale.

(ii) In the gas region, the solute transport is due to both convection and diffusion whereas the transport in 
the liquid region is due primarily to diffusion. The solute concentration in both regions are microscale 
independent:

Over the convection time scale in the gas region,
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The first order correction of the concentration is expressed as

and the following bvp must be satisfied:

Over the diffusion time scale in the gas region,

where nl and ng are the liquid and gas region porosity values respectively. Also

and q is a convection velocity which takes a complicated form and is not given here. The dispersion 
tensor is given as

By combining the equations over the convection and diffusion time scales the macroscale transport 
equation becomes

The boundary-value problems summarized above must be solved to determine the permeability and 
dispersion coefficients for given microcell geometry.

THE MICROCELL GEOMETRIES AND NUMERICAL CALCULATION

The cell geometries used in the calculation of the permeability and the dispersion coefficients are shown 
in Fig. 1 and Fig. 2 together with the velocity field. The fracture domains are divided into rectangles and 
each rectangle is further divided into two triangular elements. Three types of single fracture geometry are 
chosen: a straight channel, a V-shaped channel(continuation of this is a zigzag type channel), and a 
sinusoidal channel. For multi-channel fracture geometry the following two types are chosen: two parallel 
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straight channels inclined at 45deg from the horizontal, and  two parallel channels with one connecting 
fracture.

For selected microcell geometry the boundary-value problems can, in principle, be solved by numerical 
methods. Specifically finite elements have been used with quadratic basis function for the velocity and 
linear elements for pressure. After solving for the flow field in the fractures, the convective-diffusion 
problem is aolved with linear basis functions. Variational principles have been derived for both the flow 
and convective-diffusion problems. The details are omitted here.

Fig. 1 The fracture geometries and the velocity fields: (a) a single straight fracture, (b) a V-shaped 
fracture, and (c) S-shaped fracture. The arrows show the relative magnitudes of the velocity vector.



WM2010 Conference, March 7- 11, 2010, Phoenix, AZ

Fig. 2 The fracture geometries and the velocity fields: (a) two parallel straight fractures with an 
inclination from the horozontal, and (b) two parallel straight fractures with a connecting fracture. The 
arrows show the relative magnitudes of the velocity vector.

THE MICROCELL GEOMETRIES AND NUMERICAL CALCULATION

The cell geometries used in the calculation of the permeability and the dispersion coefficients are shown 
in Fig. 1. Each rectangle is further divided into two triangular elements(not shown in the figure). The cell 
is in square shape, i.e., if the side lengths along x- and y-directions are lx and ly, lx = ly.

Three types of single fracture geometry are chosen: a straight channel, a V-shaped channel(continuation 
of this is a zig-zag channel shape), and a S-shaped(sinusoidal) channel. For multi-channel fracture 
geometry the following three types are chosen: two parallel straight inclined channels,  two parallel 
channels with one connecting fracture, and two parallel channels with two connecting fractures.

For selected microcell geometry the boundary-value problems can, in principle, be solved by numerical 
methods. Specifically finite elements have been used with quadratic basis function for the velocity and 
linear elements for pressure. After solving for the flow field in the fractures, the convective-diffusion 
problem is solved with linear basis functions. Variational principles have been derived for both the flow 
and convective-diffusion problems. The details are omitted here.

RESULTS AND DISCUSSIONS

Permeability

The sample velocity fields in the fracture are shown in Fig. 2. Because of the no-slip condition 
the the fracture wall, the magnitude of the velocity is zero on the wall and increases toward the 
central region of fracture.
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Various meshes have been used to achieve convergence of the permeability. The results are 
summarized in Table 1 below. The symbol Ny is the number of intervals in the transverse 
direction across the fracture. As Ny is doubled, the permeability converges quickly. The changes 
from Ny=8 to Ny=16 are less than 0.1%. 

For straight channel the velocity profile is parabolic across the fracture. Specifically, if the 
porosity of the straight channel is , the velocity is given as vx =(2/4 - y2)/2 from which its 
volume average is given as <vx >=3/12. With =0.1 (the gas region porosity ng is also equal to 
1), it becomes <vx >=8.33330E-05. For V-shape  and S-shape channels the permeability decreases as a 
result of transverse distortion of the fracture as compared with the straight channel case. It is seen that the 
permeability is smaller for S-shape channel as the fracture is continuously distorted along the longitudinal 
direction.

Table 1. Permeability Kxx for Various Single Fractures

Ny Straight Channel V-shape Channel S-shape Channel

2 8.33330 E-05 4.6027 E-05 2.5255 E-05

4 8.33330 E-05 4.6208 E-05 2.5254 E-05

8 8.33330 E-05 4.6262 E-05 2.5248 E-05

16 - 4.6291 E-05 2.5247 E-05

For multiple fracture geometries the calculated permeabilities are shown in Table 2 in which N is 
the number of intervals across a fracture. for two parallel fractures inclined at 45deg from the 
horizontal and three fracture geometry (two parallel fractures with one connecting fracture between them). 
Since the fractures are oriented at 45deg Kxx and Kyy values appear to be very close to each 
other for both cases. Also because of fracture orientations in a specific direction(non-isotropic 
feature) the off-diagonal entries Kxy and Kyx have non-zero values.

Table 2. Permeability for Multiple Fractures: 

(a) Two Parallel Fractures

N Kxx Kyy Kxy Kyx

2 2.0985 E-05 2.0922 E-05 2.0630 E-05 2.0839 E-05

4 2.1015 E-05 2.0875 E-05 2.0609 E-05 2.0789 E-05

8 2.1020 E-05 2.0842 E-05 2.0629 E-05 2.0739 E-05

(b) Three Fractures

N Kxx Kyy Kxy Kyx

2 2.9130 E-05 2.9596 E-05 1.3820 E-05 1.3740 E-05

4 2.9192 E-05 2.9410 E-05 1.3826 E-05 1.3682 E-05

6 2.9155 E-05 2.9319 E-05 1.3522 E-05 1.3672 E-05
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8 2.9111 E-05 2.9259 E-05 1.3558 E-05 1.3675 E-05

10 2.9073 E-05 2.9215 E-05 1.3500 E-05 1.1368 E-05

Dispersion Coefficients

There are two externally imposed parameters in the consideration of dispersion 
coefficients: one is the direction of the global pressure gradient that drives the seepage flow and 
the other is the direction of global concentration gradient: for the former x-direction has been 
chosen for convenience and the latter is specified in the second subscript in Dij. 

For single fracture channels, because of solute spreading in the longitudinal direction 
only, Dyx = Dxy = Dyy =0. Variations of the longitudinal dispersion coefficient Dxx with Peclet 
number are shown in Fig.3(a) for the three types of channel geometries. It shows the largest for 
the straight channel and decreases as the geometry is changes to V-shape and then to S-shape. 
For the V-shape channel the dispersion in each straight segment of the fracture is similar to the 
straight channel case except the channel orientation, but for the S-shape channel channel 
orientation changes continuously all along the channel and the reduction of spreading becomes 
larger. 

For multiple fracture geometry various dispersion coefficients are shown in Fig. 3(b) for 
two-channel geometry. Under the condition of macroscale pressure gradient directed into the x-
axis the longitudinal dispersion coefficient Dxx is more than one and a half times larger than the 
transverse dispersion coefficient Dyy. It is noted that, due to the fracture orientations mainly in 
the direction of 45deg from the horizontal, the off-diagonal entries Dxy and Dyx are non-zero 
and is as large as Dyy. This indicates that the dispersion characteristics strongly depend on the 
medium structure on the microscale in terms of the fracture orientations. 



WM2010 Conference, March 7- 11, 2010, Phoenix, AZ

Fig. 3 The dispersion coefficients: (a) the longitudinal dispersion coefficient Dxx for various single 
fracture geometries, a straight channel, a V-shaped channel, and a S-shaped channel, (b) the dispersion 
coefficients Dxx , Dyy , Dyx , Dxy.
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CONCLUSIONS

From the present study of calculating the permeability and dispersion coefficients for solute in an
unsaturated rock medium with pores of fracture type the following conclusions are drawn.

1. The permeability for single fractures is the largest for straight channel fractures and decreases as the 
distortion(or tortuosity) increases..

2. The permeability for multi-fracture geometries on the microscale highly depends on the characteristics 
of fracture orientation. As a result seepage characteristics can hardly become isotropic and show 
anisotropic features to certain extent.

3. The dispersion for single fracture geometries is influenced by the flow characteristics in the fracture. 
As the distortion of the fracture increases, the dispersion decreases.

4. For multiple fractures the dispersion characteristics are closely related to the flow characteristics and 
therefore information on the fracture alignments over the microscale affect the dispersion significantly.
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