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ABSTRACT

In this paper, the lattice Boltzmann method is reviewed for specific applications to numerical simulation 
of multiphase flow problems. A thorough literature review regarding the multi-phase lattice Boltzmann 
method was conducted with special focus on flows with large density and viscosity ratios between the 
two phases. A multiphase model with the capability of handling large-density-ratios is crucial for the 
modeling efforts at Florida International University since Department of Energy related operations such 
as the pulsed-air mixing involve air bubbles formed in tanks where the liquid to gas density ratio is 
approximately 1000. It was observed that there have been four major interface tracking methods 
developed in the lattice Boltzmann framework, namely; the color method, the free-energy method, Shan-
Chen’s potential method and the index-function method. There have also been other methods proposed 
such as the hybrid level-set lattice Boltzmann method and the front-tracking lattice Boltzmann method, 
however, they have not been applied as extensively as the others. Lattice Boltzmann simulations are 
reported to be unstable when the density ratio between fluids are larger than 10. Of twenty-six papers 
reviewed on multiphase lattice Boltzmann method with the single-relaxation-time collision model, five 
have extended the capability of the multiphase methods into fluids with large-density-ratios up to 1000. 
However, the single-relaxation-time lattice Boltzmann method using the Bhatnagar-Gross-Krook collision 
model was found to have stability issues when the viscosity of the fluid is reduced or the Reynolds 
number is increased. Lattice Boltzmann method using the multiple-relaxation-time collision operator was 
proposed by researchers in order to simulate flows where viscosities are low or the Reynolds number is 
large. Twenty-five publications were reviewed on multiple-relaxation-time methods, seventeen of which 
were specific to multiphase flows. Six of the multiple-relaxation-time papers were focused on multiphase 
flows with large liquid to gas density ratios, which was identified as another source of numerical 
instabilities observed in multiphase simulations with the lattice Boltzmann method. The multiple-
relaxation-time lattice Boltzmann method coupled with the modified index-function approach was 
observed to be capable of stable simulations of high-density-ratio, low viscosity multiphase flows.

INTRODUCTION

As a result of atomic weapons production, millions of gallons of radioactive waste was generated and 
stored in underground tanks at various U.S. Department of Energy sites. Department of Energy is 
currently in the process of transferring the waste from single shell tanks to double shell tanks. Various 
waste retrieval and processing methods are employed during the transfer of the waste. One such method, 
pulsed-air mixing, involves injection of discrete pulses of compressed air or inert gas at the bottom of the 
tank to produce large bubbles that rise due to buoyancy and mix the waste in the tank as a result of this 
rising motion. Pulsed-air mixers are operated by controlling the pulsing frequency and duration, the 
sequence of injection plates and gas pressure. Low equipment cost, high durability, easy decontamination 
and low operating costs are some of the advantages of pulsed-air mixers over other waste mixing 
technologies.

The pulsed-air technology is commercially available and its effectiveness has been demonstrated at 
Pacific Northwest National Laboratory [1,2,3], however, understanding the physical nature of the mixing 
phenomena by injection of air bubbles and the effects of the air release process to the tank environment 
need to be studied by considering various waste conditions. Such an analysis can be made possible by 
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developing a numerical method that can simulate the process of air bubble generation inside tanks filled 
with liquid. The final computational program would serve as a tool for the site engineers to predict 
various mixing scenarios and improve operational procedures of pulsed-air mixing efficiently.

In this paper, a numerical method, lattice Boltzmann method, is reviewed that can model multiphase 
flows accurately and efficiently. Lattice Boltzmann method is advantageous over traditional Navier-
Stokes [4] based computational models since surface forces are handles more effectively in lattice 
Boltzmann method [5]. Lattice Boltzmann method has been mostly employed using the Bhatnagar-Gross-
Krook collision operator [6] with a single relaxation time to simulate multiphase flows. This has brought 
a limitation when the fluid viscosity is low which makes the lattice Boltzmann method simulations 
unstable. In order to avoid instability issues, multiple-relaxation-time lattice Boltzmann models are 
proposed that use a collision operator that can adjust the bulk and shear viscosities independently. 
Feasibility of multiple-relaxation-time lattice Boltzmann method for multiphase flow simulations is 
investigated in this paper. A thorough literature review is presented with successful verification cases 
related to bubbly flows in tanks. 

Special attention will be given to two-phase flows with high density ratios since this brings another 
challenge in terms of instabilities to lattice Boltzmann method simulations for multiphase flows with 
density ratios larger than 10. The instability is considered to be generated as a result of large density 
gradients in the interfacial region between two phases. Possible solutions found in the literature are
discussed in the paper.

The outline of the report is given as the following: first an overview of numerical modeling approaches to 
multiphase flows is presented. Secondly, the lattice Boltzmann method using the single relaxation time 
for the collision term is introduced in relation to the multiphase flows. Later, multiple relaxation time 
based lattice Boltzmann methods for multiphase flows are discussed. Applications to model multiphase 
flows with a large density ratio between different phases are shown. Finally, conclusions are drawn and 
discussions for future work plan are presented.

MULTIPHASE COMPUTATIONAL FLUID DYNAMICS METHODS

There are two major computational fluid dynamics methods used to study multiphase flows, which are 
front capturing methods and front tracking methods.

In front capturing methods the exact location of the interface separating two fluids is not determined 
exactly but approximated. The Marker-and-Cell and Volume-of-Fluid methods are the most popular front 
capturing methods. In the Marker-and-Cell method, the Navier-Stokes equations are solved for the whole 
domain as a single fluid using a stationary Eulerian grid and different phases are simulated by adjusting 
the local fluid properties (Fig. 1.(a)). The interface is tracked using Lagrangian markers that are used to 
interpolate the fluid properties such as viscosity and density. In order to represent the fluid properties 
accurately, a large number of markers need to be employed which makes the method computationally 
intensive. Challenges regarding the determination of the interface from the markers, grid resolution 
dependence of the accuracy of the solution and macroscopic representation of the surface tension make 
the method disadvantageous for multiphase flow simulation. 

Volume-of-Fluid method replaces the need to allocate a large number of markers in the Marker-and-Cell
method by calculating volume fractions at each grid cell (Fig. 1.(b)). However, surface tension still has to 
be calculated as it is in Marker-and-Cell method. Volume-of-Fluid also suffers from inability to capture 
the exact location of the interface and still has problems in solving cases with liquid break-up and 
coalescence. Level set method is another front capturing method which uses two sets of equations in 
contrast to the Marker-and-Cell and Volume-of-Fluid methods. In addition to the Navier-Stokes equation, 
a convection equation is solved to calculate the level set function that changes sign depending on the 
position with respect to the interface. The surface tension is calculated similar to Volume-of-Fluid;
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(a) Marker-and-Cell method (b) Volume-of-Fluid method
Fig. 1. Schematic presenting the representation of the interface in front capturing methods.

however, the interface is determined more easily as compared to the Volume-of-Fluid method. Mass 
conservation is an issue with the level set method due to the non-conservative convection equation solved 
for the index function. 

Front tracking methods, on the other hand, capture the location of the interface exactly since the interface 
is tracked directly. There are different approaches used in front tracking methods. In the boundary-fitted 
grid method, the interface is fit on the grid and the Navier-Stokes equations are solved for both sides of 
the interface. Surface tension is applied on the interface as a boundary condition where the Laplace’s law
[7] is used to determine the pressure in cells surrounding the interface. At each time step in the iteration 
the new location of the interface is moved according to the velocity of the field. In this method the grid 
must be fine enough to represent the interface properly and liquid break-up is difficult to simulate. 
Unverdi and Tryggvason (1992) have developed a hybrid method that uses two sets of grids at the same 
time [8]; a stationary grid for the fluid flow and a lower dimension grid for the interface. In this method, 
which is presented in detail in [9], a single Navier-Stokes equation is used for the whole domain as in 
front capturing methods while the exact location of the interface is still tracked. Gokaltun et al. (2003) 
have used the front tracking method coupled with a finite volume solver to extend the method to 
multiphase lows in complex geometries [10]. Representing the geometry of the interface independent 
from the grid reduces the grid resolution requirement in this method as compared to the boundary-fitted 
method. On the other hand, the criterion used for break-up or coalescence of liquids in this method does 
not have a physical base but rather depends on the distance between interfaces.

MULTI PHASE LATTICE BOLTZMANN METHOD BHATNAGAR-GROSS-KROOK
MODELS

Due to its capability to inherently capture interfacial flows, lattice Boltzmann method multiphase models 
has been investigated in the past two decades by many researchers [11,5,12]. The lattice Boltzmann 
method has advantages in simulating multiphase flows where the intermolecular attraction between 
different phases can be modeled easily. The interface between two liquids is not required to be 
determined as in Volume of Fluids approach, but liquid break-up can still be predicted using front 
capturing methods. In addition to this, the information is passed on to the neighboring nodes locally that 
allow the lattice Boltzmann method computations to be highly parallelizable. 

Gunstensen et al. (1991) has developed a multiphase lattice Boltzmann method [13] called the ‘color 
method’ that was based on a two-component lattice gas automata model [14]. This model used two 
distribution functions, red and blue, in order to represent two different fluids. The interface was 
maintained by introducing a re-coloring step in order to force different phases towards the fluids with 
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same colors. The drawback of this model was that it was computationally expensive to re-distribute the 
colored density at each lattice node. In addition to that, anisotropic surface tension could cause vortices 
near interfaces [15]

Another multiphase lattice Boltzmann method, typically referred to as the ‘potential method’, was 
proposed by Shan and Chen (1993) that automatically generated the surface interface by modifying the 
surface tension related terms in the collision operators using the inter-particle potentials [16]. The 
isotropy of the surface tension was improved, however, this model was observed to create spurious 
currents near interfaces which was due to the deficiency of the surface tension related collision operator to 
conserve local momentum [15]

Swift et al. (1995) developed a multiphase lattice Boltzmann method based on the free-energy approach 
[17]. The equilibrium distribution was modified so that the pressure tensor was consistent with the tensor 
derived from the free-energy function of non-uniform fluids. The method lacked Galilean invariance that
the temperature would depend on the density gradient even for isothermal fluids resulting in an incorrect 
energy balance equation.

He et al. (1999) introduced an incompressible multiphase lattice Boltzmann method where interfacial 
dynamics were modeled by incorporating molecular interactions and the interfaces between different 
phases were tracked using an index function [18]. Two sets of distribution functions were used; one for 
tracking the pressure and velocity fields and the other for the variable called the index function which is 
used to obtain density and viscosity. The model was extended by Premnath (2004) to incorporate 
axisymmetric coordinates [15]. Two-dimensional Rayleigh-Taylor instabilities were simulated and the 
results for initial linear growth rate and the terminal bubble velocity were verified comparing against 
previous theoretical and numerical results for the single mode instability. 

The methods listed above represented the interface between two fluids as a transition layer, whose 
evolution was either not described explicitly as in the color method [13] and the potential method [16], or 
the physics of the interface capturing equation was not clearly stated as in the index method of He et al. 
[18].The density gradient was calculated in the whole flow field and the interface was captured where the 
gradient was non-zero. Only in the free energy method [17] a convection-diffusion equation was used to 
capture the interface that captured the evolution equation of the interface, Cahn-Hilliard equation, when 
the Chapman-Enskog expansion was used. 

LATTICE BOLTZMANN METHOD FOR HIGH-DENSITY RATIO MULTIPHASE FLOWS 

One common limitation of the multiphase lattice Boltzmann method described so far was that their 
applications were limited to low density ratios between phases. The density ratio obtained by the Swift’s 
free-energy method was less than 10, which was also the limit for the index-function method of He et al. 
(1999). Attempts to improve Gunstensen’s color method to higher density ratios were only successful to 
achieve density ratios up to 4 [19] and 20 [20]. Lishchuk et al. (2008) have claimed to extend the color 
method to density ratios up to 500 however they have reported simulations with density ratios less than 10 
due to computational expense of the method at larger density ratios [21]. The exact reasons of this low-
density-ratio limit in lattice Boltzmann method multiphase models have not yet been explained clearly, 
however the inherent compressible characteristic of the lattice Boltzmann method is considered to be one 
of the reasons. 

Inamuro et al. (2004) proposed a method based on the free energy method to extend its capability to 
incorporate fluids with large density ratios up to 1000 [22]. They used a pressure correction step in order 
to enforce the continuity equation after the collision and streaming step. The projection step required 
solving the Poisson’s equation for the whole flow field and has reduced the computational efficiency of 
the method and problems with assigning a cut-off value for the order parameter, evolved by the Cahn-
Hilliard interface evolution equation, and a lack of analytical expression of the surface tension coefficient 
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has been brought forward as deficiencies of the method [23,24]. In addition, the additional terms that 
show up in the recovered interface evolution equation caused the method to lack Galilean invariance.

Lee and Lin (2005) have used the index function method of He et al. [18] in order to develop a stable 
version for multiphase flows with large density ratios up to 1000 and viscosity ratio varying from 40 to 
100 [25]. A modified pressure was introduced in order to avoid the large pressure fluctuations across the 
interface causing the scheme to be unstable at high density ratios in the index function model by He et al. 
(1999). The forcing term in the pre-streaming collision step and post-collision step were treated 
differently in order to improve the stability of the method. The results were verified for a stationary drop 
using the Laplace’s law and their method was observed to have a high degree of isotropy. Using a D3Q19 
lattice model, a 3D droplet oscillation case is solved for a density ratio of 1000 and a viscosity ratio of 
100. The oscillation periods for droplets with various radius size and thicknesses were verified against 
analytical results with maximum errors being less than 5%. Droplet splashing on a thin liquid film was 
also analyzed where the density ratio was 1000, maximum viscosity ratio was 40 and the Weber number 
was 8000. However, their model was criticized for not recovering the lattice Boltzmann equation (LBE)
for the interface to the Cahn-Hilliard equation [23].

Based on the free-energy model, Zheng et al. (2006) used a modified lattice Boltzmann method [26] that 
recovered the lattice Boltzmann equation for the interface to the Cahn-Hilliard equation with the second 
order of accuracy. They also employed a D2Q5 lattice structure that improved the efficiency compared to 
the other models using D2Q9. Their model was Galilean invariant and the potential form of the surface 
tension related term was used to reduce the spurious currents. Their model was verified by comparing the 
surface tension for a stationary liquid cylinder with a density ratio of 1000 against the Laplace law. 
Oscillating capillary wave motion of an interface with density ratio of 1000 was also simulated and 
verified against theoretical results for angular frequencies. Buoyancy driven rising bubbles were 
simulated in comparison to Volume-of-Fluid and lattice Boltzmann method simulations of Takada et al. 
using the Swift’s free energy method [27] with maximum errors of 3.89% and 4.35% respectively for the 
terminal velocities at a density ratio of 2.5. Rising bubble shapes and wake formations at a density ratio of 
1000 were found to be in agreement with experimental findings [28]. The interface capturing method was 
recently extended into three-dimensions using a D3Q15 and D3Q7 lattices [29]. Numerical tests for 
translation, rotation and stretching with tear showed better performance than Volume-of-Fluid method 
and the approach of Inamuro et al. (2004).

Cheng et al. (2009) used the 3D model of Zheng et al. (2008) to simulate multiple bubbles rising under 
buoyancy in a viscous and incompressible fluid at rest [30].They used a nineteen-velocity model (D3Q19) 
for the momentum phase and a seven-velocity model (D3Q7) for the fluid phase. Viscosity ratio was 
found to have a negligible effect on terminal bubble shape and velocity as compared to the ratio of density 
that is why the simulations were carried out for two phases with uniform viscosity. Terminal bubble 
shapes at a density ratio of 1000 was found to be in good agreement with experimental images at different 
Morton numbers (M=266, 41.1 and 5.51) where the Eotvos number was 116. Oblique coalescence of two 
rising bubbles and a evolution of a cloud of rising bubbles were investigated numerically.

An alternative method was introduced by Mehravaran and Hannani (2008) where a hybrid level-set lattice 
Boltzmann method was used to solve for incompressible two-phase immiscible fluids with large density 
ratios up to 1000 and viscosity ratios up to 100 [31]. The velocity field was solved using the lattice 
Boltzmann method and were input to the level-set solver in order to determine the new position of the 
interface. Poiseuille two-phase flow, oscillation of two colliding droplets and Rayleigh-Taylor instability 
were solved as numerical test cases.

MULTIPLE-RELATION-TIME MULTIPHASE LATTICE BOLTZMANN METHOD

The multiphase lattice Boltzmann method presented so far used the Bhatnagar-Gross-Krook single 
relaxation time collision operator. Using the Bhatnagar-Gross-Krook collision model, the distribution 
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functions are relaxed to the local equilibrium values at a rate determined by a single relaxation time 
parameter which is related to kinematic viscosity. lattice Boltzmann method using the Bhatnagar-Gross-
Krook model becomes numerically unstable at low values of fluid viscosity. This is primarily due to the 
linear relation of bulk viscosity and the kinematic viscosity in lattice Bhatnagar-Gross-Krook models. 
When the kinematic viscosity is reduced at high Reynolds numbers, the bulk viscosity is also reduced 
which creates spurious density fluctuations due to insufficient dissipation. The causes of numerical 
instabilities are also attributed to the nonexistence of an H theorem [32]. There have been two main 
approaches introduced in order to find a remedy to the stability problem at low viscosities; entropic 
methods [32] and multiple-relaxation-time methods. A non-polynomial equilibrium distribution function 
is used in the entropic methods. Increased computational requirements, non-constant transport 
coefficients depending on the velocity field are some of the disadvantages of these methods in practical 
computer simulations with lattice Boltzmann method. The multiple-relaxation-time model permits 
adjustment of kinematic and bulk viscosities separately. This is achieved by using a scattering matrix for 
the collision term that relaxes the distribution functions to their local equilibrium values at characteristic 
time scales. This allows keeping the bulk viscosity large enough to dissipate density fluctuations while 
lowering the shear viscosity at the same time for high Reynolds numbers. The multiple-relaxation-time
method was developed by D’Humieres (1994) at the same time when the Bhatnagar-Gross-Krook method 
was first proposed [33]. Bhatnagar-Gross-Krook method obtained more popularity due to its simplicity 
compared to the multiple-relaxation-time method. D’Humieres et al. (2002) recently reviewed the 
multiple-relaxation-time method [34] and optimal boundary conditions were reported in the literature 
[35]. Single-phase multiple-relaxation-time method has been verified by Du et al. (2006) for steady 
Poiseuille flow, driven cavity flow with 2000<Re<10,000 and double shear flow at Re= 7500 and 
100,000 [36].

Prof. Abraham’s group in Purdue University has produced multiple-relaxation-time based multiphase 
lattice Boltzmann method using He et al.’s index-function approach [18] to study simulation of liquid jets 
[37], drop impingement on dry and wet walls [38] in two-dimensional planar and axi-symmetric 
coordinates and binary drop collisions in three dimensional coordinates [15]. The multiphase model that 
was used in their multiple-relaxation-time method depended on the kinetic theory of dense fluids 
proposed by He et al. (1999). McCracken and Abraham (2005) showed that the multiphase multiple-
relaxation-time method using the index-function model can capture the pressure change across a two-
dimensional liquid cylinder due to surface tension within 12% accuracy when compared with the 
Laplace’s law [39]. It was also shown that the index function multiple-relaxation-time model was able to 
solve an oscillating liquid cylinder problem where a liquid cylinder of initial elliptical cross section with a 
density ratio of 10 oscillates in time until it reaches equilibrium. The oscillation frequencies for various 
surface tension values were captured within 3% of the analytical solution given by Lamb [40]. 
Simulations for oscillating capillary waves with an initial sinusoidal perturbation showed 8% error in the 
oscillation frequency and the decay rate when compared with the analytical solutions where the multiple-
relaxation-time model was observed to yield accurate results with viscosities 16 times lower than of a 
Bhatnagar-Gross-Krook solution.

The benchmark test cases given above were also verified with the same multiple-relaxation-time model in 
three-dimensions by Premnath and Abraham (2007) where Laplace-Young relation was predicted within 
8% accuracy, three dimensional drop oscillations were solved with 5% error for oscillation time periods 
with a density ratio of 4 [41]. In another study by Premnath and Abraham (2005), both axisymmetric and 
three dimensional representation of multiple-relaxation-time lattice Boltzmann method with the index 
function model were used to investigate drop collisions with density ratios up to 4 [42]. It was reported 
that the multiple-relaxation-time collision model does not improve numerical stability of the lattice 
Boltzmann method simulations at high density ratios.

Others have also tried to extend the multiple-relaxation-time lattice Boltzmann method into multiphase 
flows. Tolke et al. (2006) have presented a multiple-relaxation-time lattice Boltzmann method using the 
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color method [13] in order to simulate rising bubble motion with local grid refinement employed around 
the interface [43]. Li et al. (2005) carried out three-dimensional investigations of viscous coupling effects 
for two-fluid flow in a porous media [44] using multiple-relaxation-time lattice Boltzmann method with 
the potential approach of Shan and Chen [16]. Lallemand et al. (2007) have combined the multiple-
relaxation-time lattice Boltzmann method with the front-tracking method to simulate interfacial dynamics 
with surface tension in two-dimensions [45]. 

MULTIPLE-RELAXATION-TIME LATTICE BOLTZMANN METHOD FOR HIGH-DENSITY 
RATIO MULTIPHASE FLOWS 

Using multiple-relaxation-time collision model in the lattice Boltzmann method improves the stability at 
lower viscosities however the instabilities still are observed when the density ratio between the two 
liquids are large. In order to obtain an multiple-relaxation-time lattice Boltzmann method that is stable at 
high density ratios, Mukherjee (2006) has extended the multiple-relaxation-time lattice Boltzmann 
method to the higher density-ratio multiphase model developed by Lee and Lin (2005). Compared to the 
previous multiphase multiple-relaxation-time lattice Boltzmann method from the same group [37,15], the 
multiple-relaxation-time pressure distribution equation was developed for a smoothly varying pressure 
function rather than the actual pressure.  This aimed to reduce the large pressure fluctuations across the 
interface in the multiple-relaxation-time using He’s model [18]. The density was also computed directly 
from the density distribution function while an index function was used to interpolate density previously. 

In order to verify the model, the Laplace’s law was reproduced using the axisymmetric high density-ratio 
multiple-relaxation-time lattice Boltzmann method for a spherical liquid drop that is in equilibrium with 
the surrounding fluid [46]. The pressure difference between the two phases was solved within 3% of the 
analytical equation for a density ratio of 1000 and a viscosity ratio of 40. Using the same density and 
viscosity ratios, the multiple-relaxation-time lattice Boltzmann method solution for the dynamic problem 
of liquid drop oscillation was also found to be within 8% of the analytical solution of Lamb (1932) for the 
period of oscillations. Drop impingements on a wet wall were also simulated at the same density and 
viscosity ratios and power-law growth of the corona until the break-up was successfully captured. Similar 
benchmark cases at high density and viscosity ratios were also verified with comparable accuracies in 
planar two-dimensional coordinates by the same authors separately [47]. Drop impingement on walls with 
a pre-existing liquid film was further investigated using the axisymmetric multiple-relaxation-time lattice 
Boltzmann method in order to investigate the influence of wall liquid film thickness and surrounding gas 
density and viscosity on crown behavior [48]. It was observed that the rate of crown radius and height 
increases with increase in the thickness of the liquid film. An increase in surrounding gas density was 
found to delay the break-up of the crown whereas an increase in viscosity speeds up the break up process.

There have been a few other studies published in the literature trying to extend multiple-relaxation-time
lattice Boltzmann method to multiphase flows with a high density and viscosity ratios [49,50,51]. Niu et 
al. (2009) have used the multiple-relaxation-time lattice Boltzmann method multiphase model presented 
by McCracken and Abraham (2004) in order to investigate water-gas transport processes in the gas-
diffusion-layer (GDL) of a proton exchange membrane fuel cell system [49]. The multiphase multiple-
relaxation-time lattice Boltzmann method model was validated for a static droplet on a wetting wall and 
the contact angle was tested. The density and viscosity ratios between the gas and the liquid was 1000 and 
100 respectively. The variation of the calculated contact angles with the wetting potential was found to be 
in good comparison with the theoretical solution. Water-gas transportation in a three-dimensional GDL 
structure was simulated to investigate the effects of the pressure drop, wettability and viscosity ratio on 
the relative permeability that was found to show agreement with previous numerical and experimental 
works. The multiple-relaxation-time lattice Boltzmann method method was reported to be a viable tool 
for the simulation of multiphase flows in fuel cells. 
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Kuzmin and Mohaman (2009) have attempted to extend interparticle potential model into multiple-
relaxation-time lattice Boltzmann method by combining the Shan-Chen force with an expanded 
equilibrium distribution function [51]. They were able to simulate the Young’s law benchmark case with 
a density ratio of 160; however the theoretical foundation of their method was not yet established. 
Knutson and Noble (2009) have followed a different approach [50] compared to the multiphase models 
described so far. The multiphase flow lattice Boltzmann method models proposed for high-density-ratio 
problems [22,25,23] that describe the interface using a finite width of 3 or more lattice sites were 
criticized to be problematic for a number of flows such as flow through narrow pores and flows with 
significant shear stresses. They have used the multiple-relaxation-time method and the expansion method 
which does not assume the interface to have a finite width but represents it as a sharp separation between 
the fluids.  They have simulated a Poiseuille-Couette flow with a phase separation at the vertical center 
where the density ratio between the fluids at the top and bottom of the interface was 100. The location of 
the interface was fixed and they have captured the velocity profile accurately. The presented method still 
needs to be improved to simulate more complex shapes of interfaces.

CONCLUSIONS AND FUTURE WORK

The literature review has shown that, specifically for high Reynolds number flows with buoyant bubbles 
rising in a liquid at a higher density compared to the gas, the multiple-relaxation-time models developed 
by Prof. Abraham’s group at Purdue University incorporating the index-function approach has great 
potential to be applicable for modeling multiphase flows related to Department of Energy operations such 
as bubble generations and pulsed-air mixing in tanks. This model is well published and three Ph.D 
dissertations are available that explain the procedures in detail in addition to the journal publications by 
the same research group. However, the free-energy based model that was recently proposed by 
researchers from Singapore (Zheng et al., 2006) have claimed that the model used in Prof. Abraham’s 
group does not have a clear physical background for the evolution of the interface between different 
phases. Instead they proposed a multiphase Bhatnagar-Gross-Krook method with the capability to handle 
large density ratios that can recover the lattice Boltzmann method to the Cahn-Hilliard equation which is 
the evolution equation for the interface using the Chapman-Enskog expansion. This research group has 
extended the method to three dimensions and showed that the performance of the interface tracking is 
superior to the Volume of Fluid and Layer-Set methods used in classical computational fluid dynamics
methods. Extending the free-energy based method into fluids with low viscosities using the multiple-
relaxation-time collision term has not been published yet and would be a novel contribution to the 
scientific field.

For the purpose of obtaining a numerical method based on high-density-ratio multiple-relaxation-time
lattice Boltzmann method that can be used to simulate practical multiphase flow test cases such as bubble 
generations, rising bubbles, free-surface break-up and bubble coalescence, the multiple-relaxation-time
lattice Boltzmann method developed at Prof. Abraham’s research group that uses the modified index-
function model will be used in our future work. Applications using this multiphase model, both with the 
Bhatnagar-Gross-Krook and the multiple-relaxation-time collision operators, have shown that the 
multiphase model by Lee and Lin (2005) is suitable for our research purposes.

Future work will include implementing a two dimensional multiple-relaxation-time single-phase lattice 
Boltzmann method that will be used as the base for the multiphase flow solver. Application of boundary 
conditions and the accuracy of the solver will be tested for benchmark cases such as the Poiseuille flow 
and the cubic cavity flow at various Reynolds numbers. Once the single-phase flow multiple-relaxation-
time lattice Boltzmann method is verified, the multiphase flow model by Lee and Lin (2005) will be 
added to the lattice Boltzmann equation. Benchmark cases to verify the multiphase flow solver will be the 
Laplace’s law for surface tension, oscillation of capillary waves and oscillation of a droplet. The verified 
multiple-relaxation-time multiphase lattice Boltzmann method will be used to solve the dynamics of 
rising bubbles in tanks. The purpose of this test case will be to compare whether the shape of the rising 
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bubble will be captured accurately by the multiple-relaxation-time multiphase lattice Boltzmann method
as compared to previous numerical results. Special attention will be given to the circulation caused around 
the bubbles and the mixing effectiveness of the process of injecting bubbles in tanks.
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