

Applying international experience for the dismantling of Chooz A SGs

Jean-Jacques GRENOUILLET EDF - CIDEN

Content

- Experience considered
 - ✤ BR3 (Belgium)
 - **♦US**
 - Germany
- Context in France regarding waste management
- Dismantling scenario for Chooz A SGs
- Conclusions

BR3 experience (Belgium)

- Chemical decontamination
 - High Decontamination Factor (1000)
 - MEDOC process
- Free release after melting

US experience regarding SG dismantling

• One piece disposal at a LLW repository after decontamination

Barnwell

 Full Scope Decontamination prior to dismantling
* HP CORD D UV

5 WM'09 - Session 68

Stade SGs transported in 2007 to Studsvik's facility for melting

Segmentation and melting at Studsvik's facility Steam Generator Technical Concept 80-85 % Remotely operated 15-20 % shielded cutting cell Additional shielding Additional monitoring & sampling Melting Segmentation Blasting Arrival inspection Tubes & Other Parts Separation of steam dome Studsvik

Context in France regarding WM

- Free release not allowed
- A VLLW repository is available

Waste disposal cost much lower than disposal cost at the LLW repository

Chooz A SGs dismantling

- Selected scenario
 - Decontamination with a high Decontamination Factor
 - Waste Decategorisation from LLW to VLLW (disposal cost reduction)

One piece disposal

- Save time and exposure for the workers (no segmentation)
- Less release and secondary waste
- Less transportation
- Optimises the volume needed for disposal
- Issues to be solved
 - SGs acceptance at the VLLW repository
 - Secondary waste conditioning
 - Depending on the decontamination process

Selection of the decontamination process

- Open tender
 - No decontamination process prescribed
 - Objective : meet the criteria for VLLW category
- Contract award
 - Technical Criteria
 - Demonstrate the efficiency of the decontamination process on samples
 - Financial criteria
 - Total cost for EDF (including secondary waste processing and disposal)
- Drivers governing the selection by the contractor of the decontamination process
 - Secondary waste conditioning
 - Liquid release
 - Industrial experience

SG decontamination at Chooz A

- Chemical decontamination with a high decontamination factor
 - HP CORD D UV
- One piece removal

Current situation

- Contract awarded
 - Detailed Design in progress
 - SG Decontamination planned in July 2010
 - Efficiency of the decontamination process to be demonstrated on really contaminated samples (planned in April 2009)

Issues still to be solved

- SGs acceptance at the VLLW repository (under investigation by ANDRA)
 - Development of a dedicated cell might be necessary (with heavy payloads handling tools)

Conclusions

A simple Copy of BR3 experience was not possible

- No free release
- Decontamination process considered as not fully industrial by some suppliers (risk)
- Secondary waste conditioning to be developed in France
- Chooz A SGs dismantling presents some residual risks
 - Efficiency of the decontamination process. Chooz A is still a first of its kind :
 - CORD UV never used for waste decategorisation
 - Acceptance at the VLLW repository
 - Alternative solutions to be considered

Reference

- For similar experience regarding Reactor Pressure Vessel refer to :
 - WM 2009 session 18
 - « International Cooperation fot the Dismantling of Chooz A Reactor Pressure Vessel » - 9087 – JJ Grenouillet - EDF

