

Pressing Issues Faced by Waste Management in 2009 and Beyond

William Gallo

President AREVA Federal Services

WM'09 Symposium Plenary Session March 2, 2009 Phoenix, AZ

Introduction

Many issues affect Waste Management

- Program management & priorities
- Human capital / Aging workforce
- Funding
- Technology
- Public acceptance

Focus on Technology

- Back in 80's 90's DOE promoted emerging technologies
- But many technologies offered were not yet mature
- Since then funding in R&D have been reduced and focus shifted on commercial applications

Do we have the appropriate Technology Mix to successfully address the present and future Waste Management challenges?

Ref: REDUCTION OF EM FOOTPRINT AND ESTABLISHMENT OF ENERGY PARKS. OFFICE OF ENVIRONMENTAL MANAGEMENT DECEMBER 2008

I/ Reduce the legacy footprint of the DOE complex

- Life cycle costs reduction / Small sites completion / 90% footprint reduction by 2015
- 2/ Support new, beneficial sites missions
 - Enable reuse of infrastructure for other energy missions or community use
 - "Energy Parks"; Produce energy and demonstrate advanced technologies
 - Ensure long-term mission at sites sustain jobs

Energy Parks

"Brownfield" sites

AREV/

- reusing existing infrastructures and workforce
- Clean Fuel / green energy production
 - Including Nuclear
 Power Facilities
- Attract Industry and facilitate Lab / Industry partnership

3/ Treatment and Disposition of <u>Highly Radioactive Material</u>

- Special Nuclear Material (e.g., Plutonium)
- Defense Nuclear Fuel and High Level Waste
- Tank Farms
- Commercial Used Fuel

4/ Prepare the future of Nuclear Energy

- Nuclear Renaissance / Next generation of Reactors
- Advanced Recycling
- Security of Supply
- Non-Proliferation (including Global Thtreat Reduction)

HLW : Haven't we picked the Low Hanging Fruit ?

Most of the difficult problems lie ahead

- Large quantities of High Level Liquid and Sludge Waste
 - remain to be processed, with complex retrieval and chemistry issues
- Hundreds of low integrity underground tanks
 - remain to be emptied, cleaned and administratively "closed"
- Large quantities of DOE used fuel and special nuclear material
 - remain to be stabilized and prepared for disposition
- > 50,000 tons of civilian used fuel requiring disposition
 - Yucca Mountain ?

Technology readiness & examples

123

AREV/

Example: Mobile Hot Cells

At site retrieval, characterization, treatment and repackaging without new fixed facilities

- Increase flexibility / reusability
- Reduce D&D costs

Example: Waste Pre-treatment

Segregate radionuclides from non-radioactive waste species that increase glass volume

Sodium Removal (Fractional Crystallization)

"Reducing the quantity of sodium in LAW to be vitrified....is the <u>most important element</u> in determining the duration, the need for additional LAW treatment capacity, and the cost of the mission." - DOE External Technical Review on System Planning for LAW, 2008

Example: Steam Reforming

THOR[®] Fluidized Bed Steam Reforming Technology

U.S. Commercial and U.S. DOE Technology Deployment

Example: Tank Chemical Cleaning

- Technology derived from Reactor primary loop decontamination
 - for hands-on maintenance
- Potential to remove heels and most of remaining contaminants in tanks and pipes
 - Up to "Mirror Polish" surface finish
- While minimizing production of secondary waste
 - local regeneration and recycling of chemicals
- Directly relevant for final steps in tanks closure

Example: CCIM advanced vitrification

- Reduced footprint
- High temperature
 - high waste loading
 - high throughput
 - process new / highly corrosive waste
- High equipment durability
 - lifetime design / reduced maintenance
 - reduction of secondary waste
- High flexibility
 - small holdup
 - easy to stop and restart
- Potential for longer-term improvements
 - new advanced matrix formulation
 - Glass-ceramics, Ceramics

With Today's Conditions, Recycling Economics Further Improve

Industry has technology available

 to address some the most difficult cleanup challenges facing DOE

•as they reduce the footprint

There are still areas where Research and Development is needed

engaging industry together with the national labs

 to ensure most efficient transfer while adapting technologies to DOE needs